Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37626718

RESUMO

Nucleus-accumbens-associated protein-1 (NAC1) is a cancer-related transcriptional factor encoded by the NACC1 gene, which is amplified and overexpressed in various human cancers and has been appreciated as one of the top potential cancer driver genes. NAC1 has therefore been explored as a potential therapeutic target for managing malignant tumors. Here, we show that NAC1 is a negative regulator of NF-κB signaling, and NAC1 depletion enhances the level of the nuclear NF-κB in human melanoma. Furthermore, the inhibition of NF-κB signaling significantly potentiates the antineoplastic activity of the NAC1 inhibition in both the cultured melanoma cells and xenograft tumors. This study identifies a novel NAC1-NF-κB signaling axis in melanoma, offering a promising new therapeutic option to treat melanoma.

2.
J Med Virol ; 95(7): e28957, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37465969

RESUMO

Nucleus accumbens-associated protein 1 (NAC1), a transcriptional cofactor, has been found to play important roles in regulating regulatory T cells, CD8+ T cells, and antitumor immunity, but little is known about its effects on T-cell memory. In this study, we found that NAC1 expression restricts memory formation of CD4+ T cells during viral infection. Analysis of CD4+ T cells from wild-type (WT) and NAC1-deficient (-/- ) mice showed that NAC1 is essential for T-cell metabolism, including glycolysis and oxidative phosphorylation, and supports CD4+ T-cell survival in vitro. We further demonstrated that a deficiency of NAC1 downregulates glycolysis and correlates with the AMPK-mTOR pathway and causes autophagy defective in CD4+ T cells. Loss of NAC1 reduced the expression of ROCK1 and the phosphorylation and stabilization of BECLIN1. However, a forced expression of ROCK1 in NAC1-/- CD4+ T cells restored autophagy and the activity of the AMPK-mTOR pathway. In animal experiments, adoptively transferred NAC1-/- CD4+ T cells or NAC1-/- mice challenged with VACV showed enhanced formation of VACV-specific CD4+ memory T cells compared to adoptively transferred WT CD4+ T cells or WT mice. This memory T-cell formation enhancement was abrogated by forcing expression of ROCK1. Our study reveals a novel role for NAC1 as a suppressor of CD4+ T-cell memory formation and suggests that targeting NAC1 could be a new approach to promoting memory CD4+ T-cell development, which is critical for an effective immune response against pathogens.


Assuntos
Proteínas Quinases Ativadas por AMP , Linfócitos T CD8-Positivos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T CD4-Positivos , Sobrevivência Celular , Memória Imunológica , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo
3.
Biomedicines ; 11(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37189841

RESUMO

Triple-negative breast cancer (TNBC), characterized by a deficiency in estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor2 (HER2), is among the most lethal subtypes of breast cancer (BC). Nevertheless, the molecular determinants that contribute to its malignant phenotypes such as tumor heterogeneity and therapy resistance, remain elusive. In this study, we sought to identify the stemness-associated genes involved in TNBC progression. Using bioinformatics approaches, we found 55 up- and 9 downregulated genes in TNBC. Out of the 55 upregulated genes, a 5 gene-signature (CDK1, EZH2, CCNB1, CCNA2, and AURKA) involved in cell regeneration was positively correlated with the status of tumor hypoxia and clustered with stemness-associated genes, as recognized by Parametric Gene Set Enrichment Analysis (PGSEA). Enhanced infiltration of immunosuppressive cells was also positively correlated with the expression of these five genes. Moreover, our experiments showed that depletion of the transcriptional co-factor nucleus accumbens-associated protein 1 (NAC1), which is highly expressed in TNBC, reduced the expression of these genes. Thus, the five genes signature identified by this study warrants further exploration as a potential new biomarker of TNBC heterogeneity/stemness characterized by high hypoxia, stemness enrichment, and immune-suppressive tumor microenvironment.

4.
Biochem Pharmacol ; 211: 115533, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019189

RESUMO

In this study, we uncovered the nuclear export of nucleus accumbens-associated protein-1 (NAC1) as a novel mechanism involved in ovarian cancer resistance to taxanes, the chemotherapeutic drugs commonly used in treatment of this malignancy. We showed that NAC1, a nuclear factor of the BTB/POZ gene family, has a nuclear export signal (NES) at the N terminus (aa 17-28), and this NES critically contributes to the NAC1 nuclear-cytoplasmic shuttling when tumor cells were treated with docetaxel. Mechanistically, the nuclear-exported NAC1 bound to cullin3 (Cul3) and Cyclin B1 via its BTB and BOZ domains respectively, and the cyto-NAC1-Cul3 E3 ubiquitin ligase complex promotes the ubiquitination and degradation of Cyclin B1, thereby facilitating mitotic exit and leading to cellular resistance to docetaxel. We also showed in in vitro and in vivo experiments that TP-CH-1178, a membrane-permeable polypeptide against the NAC1 NES motif, blocked the nuclear export of NAC1, interfered with the degradation of Cyclin B1 and sensitized ovarian cancer cells to docetaxel. This study not only reveals a novel mechanism by which the NAC1 nuclear export is regulated and Cyclin B1 degradation and mitotic exit are impacted by the NAC1-Cul3 complex, but also provides the nuclear-export pathway of NAC1 as a potential target for modulating taxanes resistance in ovarian cancer and other malignancies.


Assuntos
Neoplasias Ovarianas , Proteínas Repressoras , Humanos , Feminino , Transporte Ativo do Núcleo Celular , Docetaxel/farmacologia , Ciclina B1/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias Ovarianas/metabolismo
5.
World J Gastrointest Oncol ; 14(12): 2329-2339, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36568940

RESUMO

BACKGROUND: Nucleus accumbens-1 (NAC-1) is highly expressed in a variety of tumors, including colon cancer, and is closely associated with tumor recurrence, metastasis, and invasion. AIM: To determine whether and how NAC-1 affects antitumor immunity in colon cancer. METHODS: NAC-1-siRNA was transfected into RKO colon cancer cells to knock down NAC expression; tumor cells with or without knockdown of NAC-1 were treated with CD8+ T cells to test their cytocidal effect. The level of the immune checkpoint programmed death receptor-1 ligand (PD-L1) in colon cancer cells with or without knockdown of NAC-1 was analyzed using Quantitative real-time polymerase chain reaction and Western blotting. A double luciferase reporter assay was used to examine the effects of NAC-1 on the transcription of PD-L1. Mice bearing MC-38-OVA colon cancer cells expressing NAC-shRNA or control-shRNA were treated with OT-I mouse CD8+ T cells to determine the tumor response to immunotherapy. Immune cells in the tumor tissues were analyzed using flow cytometry. NAC-1, PD-L1 and CD8+ T cells in colon cancer specimens from patients were examined using immunohistochemistry staining. RESULTS: Knockdown of NAC-1 expression in colon cancer cells significantly enhanced the cytocidal effect of CD8+ T cells in cell culture experiments. The sensitizing effect of NAC-1 knockdown on the antitumor action of cytotoxic CD8+ T cells was recapitulated in a colon cancer xenograft animal model. Furthermore, knockdown of NAC-1 in colon cancer cells decreased the expression of PD-L1 at both the mRNA and protein levels, and this effect could be rescued by transfection of an RNAi-resistant NAC-1 expression plasmid. In a reporter gene assay, transient expression of NAC-1 in colon cancer cells increased the promoter activity of PD-L1, indicating that NAC-1 regulates PD-L1 expression at the transcriptional level. In addition, depletion of tumoral NAC-1 increased the number of CD8+ T cells but decreased the number of suppressive myeloid-derived suppressor cells and regulatory T cells. CONCLUSION: Tumor expression of NAC-1 is a negative determinant of immunotherapy.

6.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36150745

RESUMO

BACKGROUND: T cell-mediated antitumor immunity has a vital role in cancer prevention and treatment; however, the immune-suppressive tumor microenvironment (TME) constitutes a significant contributor to immune evasion that weakens antitumor immunity. Here, we explore the relationship between nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the BTB (broad-complex, Tramtrack, bric a brac)/POZ (Poxvirus, and Zinc finger) gene family, and the TME. METHODS: Adoptive cell transfer (ACT) of mouse or human tumor antigen (Ag)-specific CD8+ cytotoxic T lymphocytes (CTLs) was tested in an immunocompetent or immunodeficient mouse model of melanoma with or without expression of NAC1. The effects of NAC1 expression on immune evasion in tumor cells were assessed in vitro and in vivo. CRISPR/Cas9, glycolysis analysis, retroviral transduction, quantitative real-time PCR, flow cytometric analysis, immunoblotting, database analyses were used to screen the downstream target and underlying mechanism of NAC1 in tumor cells. RESULTS: Tumorous expression of NAC1 negatively impacts the CTL-mediated antitumor immunity via lactate dehydrogenase A (LDHA)-mediated suppressive TME. NAC1 positively regulated the expression of LDHA at the transcriptional level, which led to higher accumulation of lactic acid in the TME. This inhibited the cytokine production and induced exhaustion and apoptosis of CTLs, impairing their cell-killing ability. In the immunocompetent and immunodeficient mice, NAC1 depleted melanoma tumors grew significantly slower and had an elevated infiltration of tumor Ag-specific CTLs following ACT, compared with the control groups. CONCLUSIONS: Tumor expression of NAC1 contributes substantially to immune evasion through its regulatory role in LDHA expression and lactic acid production. Thus, therapeutic targeting of NAC1 warrants further exploration as a potential strategy to reinforce cancer immunotherapy, such as the ACT of CTLs.


Assuntos
Evasão da Resposta Imune , Lactato Desidrogenase 5 , Melanoma , Proteínas do Tecido Nervoso , Proteínas Repressoras , Animais , Antígenos de Neoplasias , Citocinas , Humanos , Lactato Desidrogenase 5/metabolismo , Ácido Láctico , Melanoma/imunologia , Camundongos , Camundongos SCID , Proteínas de Neoplasias , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética , Microambiente Tumoral
7.
Viruses ; 14(8)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36016335

RESUMO

Nucleus accumbens-associated protein 1 (NAC1) is a transcription co-factor that has been shown to possess multiple roles in stem cell and cancer biology. However, little is known about its roles in regulation of the immune system. In the current study, we observed that expression of NAC1 impacted the survival of CD8+ T cells in vitro. NAC1-/- CD8+ T cells displayed lower metabolism, including reduced glycolysis and oxidative phosphorylation. In vivo, compared with wild-type (WT) mice, NAC1-/- mice produced a lower response to vaccinia virus (VACV) infection, and viral antigen (Ag)-specific CD8+ T cells decreased more slowly. Additionally, we observed that the NAC1-/- mice demonstrated a stronger memory formation of viral Ag-specific CD8+ T cells post-viral infection. Mechanically, we identified that compared with WT CD8+ T cells, the Interferon Regulatory Factor 4 (IRF4), a key transcription factor in T cell development, was highly expressed in NAC1-/- CD8+ T cells, insinuating that IRF4 could be a critical regulatory target of NAC1 in the memory formation of CD8+ T cells. Our results indicate that NAC1 restrains the memory formation of CD8+ T cells by modulating IRF4, and targeting NAC1 may be exploited as a new approach to boosting CD8+ T cell memory.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Animais , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vaccinia virus , Viroses/metabolismo
8.
Sci Adv ; 8(26): eabo0183, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767626

RESUMO

We report here that nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the Broad-complex, Tramtrack, Bric-a-brac/poxvirus and zinc finger (BTB/POZ) gene family, is a negative regulator of FoxP3 in regulatory T cells (Tregs) and a critical determinant of immune tolerance. Phenotypically, NAC1-/- mice showed substantial tolerance to the induction of autoimmunity and generated a larger amount of CD4+ Tregs that exhibit a higher metabolic profile and immune-suppressive activity, increased acetylation and expression of FoxP3, and slower turnover of this transcription factor. Treatment of Tregs with the proinflammatory cytokines interleukin-1ß or tumor necrosis factor-α induced a robust up-regulation of NAC1 but evident down-regulation of FoxP3 as well as the acetylated FoxP3. These findings imply that NAC1 acts as a trigger of the immune response through destabilization of Tregs and suppression of tolerance induction, and targeting of NAC1 warrants further exploration as a potential tolerogenic strategy for treatment of autoimmune disorders.

9.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35347072

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) targeting programmed death ligand-1 (PD-L1)/programmed cell death protein-1 (PD-1) pathway has become an attractive strategy for cancer treatment; however, unsatisfactory efficacy has limited its clinical benefits. Therefore, a more comprehensive understanding of the regulation of PD-L1 expression is essential for developing more effective cancer immunotherapy. Recent studies have revealed the important roles of eukaryotic elongation factor 2 kinase (eEF2K) in promoting epithelial-mesenchymal transition (EMT), angiogenesis, tumor cell migration and invasion; nevertheless, the exact role of eEF2K in the regulation of tumor immune microenvironment (TIME) remains largely unknown. METHODS: In this study, we used a cohort of 38 patients with melanoma who received anti-PD-1 treatment to explore the association between eEF2K expression and immunotherapy efficacy against melanoma. Immunoprecipitation-mass spectrometry analysis and in vitro assays were used to examine the role and molecular mechanism of eEF2K in regulating PD-L1 expression. We also determined the effects of eEF2K on tumor growth and cytotoxicity of CD8+ T cells in TIME in a mouse melanoma model. We further investigated the efficacy of the eEF2K inhibition in combination with anti-PD-1 treatment in vivo. RESULTS: High eEF2K expression is correlated with better therapeutic response and longer survival in patients with melanoma treated with PD-1 monoclonal antibody (mAb). Moreover, eEF2K protein expression is positively correlated with PD-L1 protein expression. Mechanistically, eEF2K directly bound to and inactivated glycogen synthase kinase 3 beta (GSK3ß) by phosphorylating it at serine 9 (S9), leading to PD-L1 protein stabilization and upregulation, and subsequently tumor immune evasion. Knockdown of eEF2K decreased PD-L1 expression and enhanced CD8+ T cell activity, thus dramatically attenuating murine B16F10 melanoma growth in vivo. Clinically, p-GSK3ß/S9 expression is positively correlated with the expressions of eEF2K and PD-L1, and the response to anti-PD-1 immunotherapy. Furthermore, eEF2K inhibitor, NH125 treatment or eEF2K knockdown enhanced the efficacy of PD-1 mAb therapy in a melanoma mouse model. CONCLUSIONS: Our results suggest that eEF2K may serve as a biomarker for predicting therapeutic response and prognosis in patients receiving anti-PD-1 therapy, reveal a vital role of eEF2K in regulating TIME by controlling PD-L1 expression and provide a potential combination therapeutic strategy of eEF2K inhibition with ICB therapy.


Assuntos
Antígeno B7-H1 , Melanoma , Animais , Anticorpos Monoclonais/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Quinase do Fator 2 de Elongação , Glicogênio Sintase Quinase 3 beta , Humanos , Melanoma/patologia , Camundongos , Receptor de Morte Celular Programada 1/uso terapêutico , Microambiente Tumoral
10.
Sci Adv ; 8(5): eabl9783, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108044

RESUMO

eEF-2K has important roles in stress responses and cellular metabolism. We report here a previously unappreciated but critical role of eEF-2K in regulating the fate and cytocidal activity of CD8+ T cells. CD8+ T cells from eEF-2K KO mice were more proliferative but had lower survival than their wild-type counterparts after their activation, followed by occurrence of premature senescence and exhaustion. eEF-2K KO CD8+ T cells were more metabolically active and showed hyperactivation of the Akt-mTOR-S6K pathway. Loss of eEF-2K substantially impaired the activity of CD8+ T cells. Furthermore, the antitumor efficacy and tumor infiltration of the CAR-CD8+ T cells lacking eEF-2K were notably reduced as compared to the control CAR-CD8+ T cells. Thus, eEF-2K is critically required for sustaining the viability and function of cytotoxic CD8+ T cells, and therapeutic augmentation of this kinase may be exploited as a novel approach to reinforcing CAR-T therapy against cancer.


Assuntos
Linfócitos T CD8-Positivos , Quinase do Fator 2 de Elongação/metabolismo , Neoplasias , Animais , Camundongos , Neoplasias/terapia , Fatores de Alongamento de Peptídeos
11.
Front Mol Biosci ; 8: 727863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532346

RESUMO

Eukaryotic Elongation Factor-2 Kinase (eEF2K) acts as a negative regulator of protein synthesis, translation, and cell growth. As a structurally unique member of the alpha-kinase family, eEF2K is essential to cell survival under stressful conditions, as it contributes to both cell viability and proliferation. Known as the modulator of the global rate of protein translation, eEF2K inhibits eEF2 (eukaryotic Elongation Factor 2) and decreases translation elongation when active. eEF2K is regulated by various mechanisms, including phosphorylation through residues and autophosphorylation. Specifically, this protein kinase is downregulated through the phosphorylation of multiple sites via mTOR signaling and upregulated via the AMPK pathway. eEF2K plays important roles in numerous biological systems, including neurology, cardiology, myology, and immunology. This review provides further insights into the current roles of eEF2K and its potential to be explored as a therapeutic target for drug development.

12.
Drug Resist Updat ; 56: 100752, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33765484

RESUMO

Immunotherapies such as CAR-T cell transfer and antibody-targeted therapy have produced promising clinical outcomes in patients with advanced and metastatic cancer that are resistant to conventional therapies. However, with increasing use of cancer immunotherapy in clinical treatment, multiple therapy-resistance mechanisms have gradually emerged. The tumor microenvironment (TME), an integral component of cancer, can significantly influence the therapeutic response. Thus, it is worth exploring the potential of TME in modulating therapy resistance, in the hope to devise novel strategies to reinforcing anti-cancer treatments such as immunotherapy. As a crucial recycling process in the complex TME, the role of autophagy in tumor immunity has been increasingly appreciated. Firstly, autophagy in tumor cells can affect their immune response through modulating MHC-I-antigen complexes, thus modulating immunogenic tumor cell death, changing functions of immune cells via secretory autophagy, reducing the NK- and CTL-mediated cell lysis and degradation of immune checkpoint proteins. Secondly, autophagy is critical for the differentiation, maturation and survival of immune cells in the TME and can significantly affect the immune function of these cells, thereby regulating the anti-tumor immune response. Thirdly, alteration of autophagic activity in stromal cells, especially in fibroblasts, can reconstruct the three-dimensional stromal environment and metabolic reprogramming in the TME. A number of studies have demonstrated that optimal induction or inhibition of autophagy may lead to effective therapeutic regimens when combined with immunotherapy. This review discusses the important roles of autophagy in tumor cells, immune cells and stromal cells in the context of tumor immunity, and the potential of combining the autophagy-based therapy with immunotherapy as novel therapeutic approaches against cancer.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Autofagia/fisiologia , Microambiente Tumoral/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Morte Celular/fisiologia , Antígenos de Histocompatibilidade Classe I/efeitos dos fármacos , Humanos , Neoplasias/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
13.
Cell Death Dis ; 11(11): 948, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144562

RESUMO

Oncogenic activation of the mTOR signaling pathway occurs frequently in tumor cells and contributes to the devastating features of cancer, including breast cancer. mTOR inhibitors rapalogs are promising anticancer agents in clinical trials; however, rapalogs resistance remains an unresolved clinical challenge. Therefore, understanding the mechanisms by which cells become resistant to rapalogs may guide the development of successful mTOR-targeted cancer therapy. In this study, we found that eEF-2K, which is overexpressed in cancer cells and is required for survival of stressed cells, was involved in the negative-feedback activation of Akt and cytoprotective autophagy induction in breast cancer cells in response to mTOR inhibitors. Therefore, disruption of eEF-2K simultaneously abrogates the two critical resistance signaling pathways, sensitizing breast cancer cells to rapalogs. Importantly, we identified mitoxantrone, an admitted anticancer drug for a wide range of tumors, as a potential inhibitor of eEF-2K via a structure-based virtual screening strategy. We further demonstrated that mitoxantrone binds to eEF-2K and inhibits its activity, and the combination treatment of mitoxantrone and mTOR inhibitor resulted in significant synergistic cytotoxicity in breast cancer. In conclusion, we report that eEF-2K contributes to the activation of resistance signaling pathways of mTOR inhibitor, suggesting a novel strategy to enhance mTOR-targeted cancer therapy through combining mitoxantrone, an eEF-2K inhibitor.


Assuntos
Autofagia , Neoplasias da Mama/tratamento farmacológico , Quinase do Fator 2 de Elongação/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mitoxantrona/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Quimioterapia Combinada , Quinase do Fator 2 de Elongação/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Oncogene ; 39(43): 6704-6718, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958832

RESUMO

Autophagy can protect stressed cancer cell by degradation of damaged proteins and organelles. However, the regulatory mechanisms behind this cellular process remain incompletely understood. Here, we demonstrate that RSK2 (p90 ribosomal S6 kinase 2) plays a critical role in ER stress-induced autophagy in breast cancer cells. We demonstrated that the promotive effect of RSK2 on autophagy resulted from directly binding of AMPKα2 in nucleus and phosphorylating it at Thr172 residue. IRE1α, an ER membrane-associated protein mediating unfolded protein response (UPR), is required for transducing the signal for activation of ERK1/2-RSK2 under ER stress. Suppression of autophagy by knockdown of RSK2 enhanced the sensitivity of breast cancer cells to ER stress both in vitro and in vivo. Furthermore, we demonstrated that inhibition of RSK2-mediated autophagy rendered breast cancer cells more sensitive to paclitaxel, a chemotherapeutic agent that induces ER stress-mediated cell death. This study identifies RSK2 as a novel controller of autophagy in tumor cells and suggests that targeting RSK2 can be exploited as an approach to reinforce the efficacy of ER stress-inducing agents against cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Autofagia , Neoplasias da Mama/patologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
iScience ; 23(7): 101333, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32679546

RESUMO

The viral antigen (Ag)-specific CD8+ cytotoxic T lymphocytes (CTLs) derived from pluripotent stem cells (PSCs), i.e., PSC-CTLs, have the ability to suppress hepatitis B virus (HBV) infection. After adoptive transfer, PSC-CTLs can infiltrate into the liver to suppress HBV replication. Nevertheless, the mechanisms by which the viral Ag-specific PSC-CTLs provoke the antiviral response remain to be fully elucidated. In this study, we generated the functional HBV surface Ag-specific CTLs from the induced PSC (iPSCs), i.e., iPSC-CTLs, and investigated the underlying mechanisms of the CTL-mediated antiviral replication in a murine model. We show that adoptive transfer of HBV surface Ag-specific iPSC-CTLs greatly suppressed HBV replication and prevented HBV surface Ag expression. We further demonstrate that the adoptive transfer significantly increased T cell accumulation and production of antiviral cytokines. These results indicate that stem cell-derived viral Ag-specific CTLs can robustly accumulate in the liver and suppress HBV replication through producing antiviral cytokines.

16.
Theranostics ; 10(4): 1833-1848, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042339

RESUMO

Purpose: To determine the role of UCH-L1 in regulating ERα expression, and to evaluate whether therapeutic targeting of UCH-L1 can enhance the efficacy of anti-estrogen therapy against breast cancer with loss or reduction of ERα. Methods: Expressions of UCH-L1 and ERα were examined in breast cancer cells and patient specimens. The associations between UCH-L1 and ERα, therapeutic response and prognosis in breast cancer patients were analyzed using multiple databases. The molecular pathways by which UCH-L1 regulates ERα were analyzed using immunoblotting, qRT-PCR, immunoprecipitation, ubiquitination, luciferase and ChIP assays. The effects of UCH-L1 inhibition on the efficacy of tamoxifen in ERα (-) breast cancer cells were tested both in vivo and in vitro. Results: UCH-L1 expression was conversely correlated with ERα status in breast cancer, and the negative regulatory effect of UCH-L1 on ERα was mediated by the deubiquitinase-mediated stability of EGFR, which suppresses ERα transcription. High expression of UCH-L1 was associated with poor therapeutic response and prognosis in patients with breast cancer. Up-regulation of ERα caused by UCH-L1 inhibition could significantly enhance the efficacy of tamoxifen and fulvestrant in ERα (-) breast cancer both in vivo and in vitro. Conclusions: Our results reveal an important role of UCH-L1 in modulating ERα status and demonstrate the involvement of UCH-L1-EGFR signaling pathway, suggesting that UCH-L1 may serve as a novel adjuvant target for treatment of hormone therapy-insensitive breast cancers. Targeting UCH-L1 to sensitize ER negative breast cancer to anti-estrogen therapy might represent a new therapeutic strategy that warrants further exploration.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Ubiquitina Tiolesterase/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/metabolismo , Antagonistas de Estrogênios/uso terapêutico , Feminino , Fulvestranto/uso terapêutico , Humanos , Camundongos , Camundongos Nus , Tamoxifeno/uso terapêutico , Ubiquitina Tiolesterase/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
J Oncol ; 2019: 3267207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885572

RESUMO

Heat shock proteins (HSPs) are highly conserved molecular chaperones with divergent roles in various cellular processes. The HSPs are classified according to their molecular size as HSP27, HSP40, HSP60, HSP70, and HSP90. The HSPs prevent nonspecific cellular aggregation of proteins by maintaining their native folding energetics. The disruption of this vital cellular process, driven by the aberrant expression of HSPs, is implicated in the progression of several different carcinomas. Many HSPs are also actively involved in promoting the proliferation and differentiation of tumor cells, contributing to their metastatic phenotype. Upregulation of these HSPs is associated with the poor outcome of anticancer therapy in clinical settings. On the other hand, these highly expressed HSPs may be exploited as viable immunotherapeutic targets for different types of cancers. This review discusses recent advances and perspectives on the research of HSP-based cancer immunotherapy.

18.
J Biol Chem ; 294(25): 10006-10017, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31101655

RESUMO

Nucleus accumbens-associated protein-1 (NAC1) is a transcriptional repressor encoded by the NACC1 gene, which is amplified and overexpressed in various human cancers and plays critical roles in tumor development, progression, and drug resistance. NAC1 has therefore been explored as a potential therapeutic target for managing malignant tumors. However, effective approaches for effective targeting of this nuclear protein remain elusive. In this study, we identified a core unit consisting of Met7 and Leu90 in NAC1's N-terminal domain (amino acids 1-130), which is critical for its homodimerization and stability. Furthermore, using a combination of computational analysis of the NAC1 dimerization interface and high-throughput screening (HTS) for small molecules that inhibit NAC1 homodimerization, we identified a compound (NIC3) that selectively binds to the conserved Leu-90 of NAC1 and prevents its homodimerization, leading to proteasomal NAC1 degradation. Moreover, we demonstrate that NIC3-mediated down-regulation of NAC1 protein sensitizes drug-resistant tumor cells to conventional chemotherapy and enhances the antimetastatic effect of the antiangiogenic agent bevacizumab both in vitro and in vivo These results suggest that small-molecule inhibitors of NAC1 homodimerization may effectively sensitize cancer cells to some anticancer agents and that NAC1 homodimerization could be further explored as a potential therapeutic target in the development of antineoplastic agents.


Assuntos
Acetamidas/farmacologia , Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/química , Multimerização Proteica/efeitos dos fármacos , Proteínas Repressoras/química , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Apoptose , Bevacizumab/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
JCI Insight ; 4(7)2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30777937

RESUMO

The autoantigen-specific Tregs from pluripotent stem cells (PSCs), i.e., PSC-Tregs, have the ability to suppress autoimmunity. PSC-Tregs can be programmed to be tissue associated and to infiltrate into local inflamed tissues to suppress autoimmune responses after adoptive transfer. Nevertheless, the mechanisms by which the autoantigen-specific PSC-Tregs suppress the autoimmune response remain to be fully elucidated. In this study, we generated functional autoantigen-specific Tregs from the induced PSC (iPSCs), i.e., iPSC-Tregs, and investigated the underlying mechanisms of autoimmunity suppression by these Tregs in a type 1 diabetes (T1D) murine model. A double-Tg mouse model of T1D was established in F1 mice, in which the first generation of RIP-mOVA Tg mice that were crossed with OT-I T cell receptor (TCR) Tg mice was challenged with vaccinia viruses expressing OVA (VACV-OVA). We show that adoptive transfer of OVA-specific iPSC-Tregs greatly suppressed autoimmunity in the animal model and prevented the insulin-secreting pancreatic ß cells from destruction. Further, we demonstrate that the adoptive transfer significantly reduced the expression of ICAM-1 in the diabetic pancreas and inhibited the migration of pathogenic CD8+ T cells and the production of the proinflammatory IFN-γ in the pancreas. These results indicate that the stem cell-derived tissue-associated Tregs can robustly accumulate in the diabetic pancreas, and, through downregulating the expression of ICAM-1 in the local inflamed tissues and inhibiting the production of proinflammatory cytokine IFN-γ, suppress the migration and activity of the pathogenic immune cells that cause T1D.


Assuntos
Transferência Adotiva/métodos , Autoimunidade , Diabetes Mellitus Tipo 1/terapia , Linfócitos T Reguladores/transplante , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Células-Tronco Pluripotentes Induzidas , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos , Camundongos Transgênicos , Pâncreas/imunologia , Pâncreas/patologia , Linfócitos T Reguladores/imunologia
20.
Vaccines (Basel) ; 6(3)2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986440

RESUMO

Hematopoietic stem cells (HSCs) yield both the myeloid and lymphoid lineages of blood cells and can be reprogrammed into tumor antigen (Ag)-specific CD8⁺ cytotoxic T lymphocytes (CTLs) to prevent tumor growth. However, the optimal approach for differentiating tumor Ag-specific CTLs from HSCs, such as HSC-CTLs, remains elusive. In the current study, we showed that a combination of genetic modification of HSCs and in vivo T cell development facilitates the generation of Ag-specific CTLs that suppressed tumor growth. Murine HSCs, which were genetically modified with chicken ovalbumin (OVA)-specific T cell receptor, were adoptively transferred into recipient mice. In the following week, mice were administered with intraperitoneal injections of an agonist α-Notch 2 antibody and cytokines (rFlt3L and rIL-7) three times. After another two weeks, mice received a subcutaneous inoculation of B16-OVA melanoma cells that express OVA as a surrogate tumor Ag, before the anti-tumor activity of HSC-derived T cells was assessed. OVA-specific CTLs developed in vivo and greatly responded to OVA Ag stimulation ex vivo. In addition, mice receiving genetically modified HSCs and in vivo priming established anti-tumor immunity, resulting in the suppression of tumor growth. These results reported in this present study provide an alternative strategy to develop protective cancer vaccines by using genetically modified HSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...