Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 104: 106824, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412679

RESUMO

Ultrasonication, a technology that employs high-frequency sound waves, has demonstrated potential for modifying the properties of various food items. However, the effect of ultrasonication on chicken meat, particularly concerning amino acid composition and flavor enhancement, has not been sufficiently investigated. The objective of this research was to bridge the gap in the literature by exploring the impact of various ultrasonic treatments at varying power levels (300, 500, and 800 W) and durations (10 and 30 min) on the physicochemical characteristics, texture, and amino acid profile of chicken breast meat, with a focus on improving its palatability and flavor. The results indicated that ultrasonication reduced the pH and cooking loss, as well as hardness and chewiness while simultaneously increasing lightness and yellowness values of chicken breast meat. Moreover, ultrasonication enhanced the amounts of essential amino acids, including glutamic acid, alanine, and glycine as well as the free amino acid content, which gives meat its savory and umami flavor. Furthermore, the results demonstrated significant changes in the texture and structure, as demonstrated by the scanning electron microscopy (SEM) images, and in chemical makeup of chicken breast meat, as indicated by the FTIR spectra. These modifications in the molecular and microstructural characteristics of meat, as induced by ultrasonication, may contribute to the enhancement of tenderness, juiciness, and overall palatability.


Assuntos
Aminoácidos , Galinhas , Animais , Carne/análise , Culinária , Som
2.
Anim Biosci ; 36(11): 1747-1756, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37402461

RESUMO

OBJECTIVE: The objective of this study was to evaluate the effects of four different cooking techniques viz: boiling, grilling, microwave, and frying; on the physicochemical characteristics of camel meat. METHODS: Protein composition and their degradation as well as biochemical and textural changes of camel meat as influenced by cooking methods were investigated. RESULTS: The highest cooking loss (52.61%) was reported in microwaved samples while grilled samples showed the lowest cooking loss (44.98%). The microwaved samples showed the highest levels of lipid oxidation as measured by thiobarbituric acid reactive substances, while boiled samples showed the lowest levels (4.5 mg/kg). Protein solubility, total collagen, and soluble collagen content were highest in boiled samples. Boiled camel meat had lower hardness values compared to the other treated samples. Consequently, boiling was the more suitable cooking technique for producing camel meat with a reduced hardness value and lower lipid oxidation level. CONCLUSION: The camel meat industry and camel meat consumer can benefit from this research by improving their commercial viability and making consumers aware about the effects of cooking procedures on the quality of camel meat. The results of this study will be of significance to researchers and readers who are working on the processing and quality of camel meat.

3.
Animals (Basel) ; 13(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36899761

RESUMO

An in-depth characterisation of protein and lipid fractions and changes in the physicochemical and meat-quality attributes of camel meat, beef and mutton over 9 days of refrigerated storage was investigated. The lipids of all the meat samples, especially those in camel meat, underwent significant oxidation in the first 3 days of storage. A decrease in pigment and redness (a* value) with an increase in the storage time was noticed in all the meat samples, suggesting the oxidation of the haem protein. The mutton samples displayed greater protein extractability, while the protein solubility values in all the meat samples were similar, and these varied as storage progressed. The drip loss percentage in camel meat and mutton were two times higher than in beef, and it increased during storage period. The textural properties of fresh camel meat were higher than mutton and beef, and these decreased during day 3 and 9, respectively, indicating the proteolysis and the degradation of the structural proteins, which were also evident from the SDS-PAGE pattern.

4.
Foods ; 12(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36832786

RESUMO

Meat contains several amino acids related to taste, which have a significant impact on the overall acceptability of consumers. A number of volatile compounds have been studied in relation to meat flavor, but amino acids have not been fully explored in relation to the taste of raw or cooked meat. It would be interesting to find any changes in physicochemical characteristics, especially the level of taste-active compounds and flavor content during non-thermal processing such as pulsed electric fields (PEF), for commercial reasons. The effect of PEF at low intensity (LPEF; 1 kV/cm) and comparatively high intensity (HPEF; 3 kV/cm) with different pulse numbers (25, 50, and 100) was investigated on the physicochemical characteristics of chicken breast, including the free amino acid content (related to umami, sweet, bitter, or fresh pleasant taste). PEF is regarded as a "nonthermal" technology; however, HPEF induces moderate temperature rises as it increases with the treatment intensity (i.e., electric field strength and pulse number). The pH, shear force, and cook loss (%) of the LPEF and untreated samples were not affected by the treatments, but the shear force of the LPEF and untreated samples was lower than that of HPEF groups that showed PEF-induced slight structural modifications resulting in a more porous cell. In the case of color parameters, the lightness of meat (L*) was significantly higher with treatment intensity, whereas both a* and b* were unaffected by the PEF treatments. Moreover, PEF treatment significantly (p < 0.05) affected umami-related free amino acids (FAAs; glutamic acid and aspartic acid) and leucine and valine, which are precursors of flavor compounds. However, PEF decreases the level of bitter taste contributing FAAs such as lysine and tyrosine, which may prevent the formation of fermented flavors. In conclusion, both PEF treatments (LPEF and HPEF) did not adversely impact the physicochemical quality of chicken breast.

5.
Food Chem X ; 16: 100516, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36439936

RESUMO

A circular economy promotes a world-friendly style of economic development, and the main aim is a closed-loop cycle of "resource-production-consumption-regeneration" economic activities. A circular economy can assist in implementing sustainable development in the food industry. During conventional food processing, the thermal effects degrade the food residues and make their wastes. Nonthermal processing has emerged as a promising, safe, and effective technique for extracting bioactive compounds from food residues. Nonthermal processing help in implementing a circular economy and meeting the United Nations approved Sustainable Development Goals (SDGs). Collaboration between food producers and the food chain may make the food industry more circular. This article motivates adopting nonthermal technologies to conserve natural resources, food safety, and energy in different food processing phases to meet SDGs.

6.
Ultrason Sonochem ; 90: 106194, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36242792

RESUMO

Sugarcane juice (Saccharum officinarum) is a proven nutritious beverage with high levels of antioxidants, polyphenols, and other beneficial nutrients. It has recently gained consumer interest due to its high nutritional profile and alkaline nature. Still, high polyphenolic and sugar content start the fermentation in juice, resulting in dark coloration. Lately, some novel techniques have been introduced to extend shelf life and improve the nutritional value of sugarcane juice. The introduction of such processing technologies is beneficial over conventional processes and essential for producing chemical-free, high-quality, fresh juices. The synergistic impact of these novel technologies is also advantageous for preserving sugarcane juice. In literature, novel thermal, non-thermal and hurdle technologies have been executed to preserve sugarcane juice. These technologies include high hydrostatic pressure (HHP), ultrasound (US), pulsed electric field (PEF), ultraviolet irradiation (UV), ohmic heating (OH), microwave (MW), microfludization and ozone treatment. This review manifests the impact of novel thermal, non-thermal, and synergistic technologies on sugarcane juice processing and preservation characteristics. Non-thermal techniques have been successfully proved effective and showed better results than novel thermal treatments. Because they reduced microbial load and retained nutritional content, while thermal treatments degraded nutrients and flavor of sugarcane juice. Among non-thermal treatments, HHP is the most efficient technique for the preservation of sugarcane juice while OH is preferable in thermal techniques due to less nutritional loss.


Assuntos
Saccharum , Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais , Temperatura Alta , Ondas Ultrassônicas
7.
Foods ; 11(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892759

RESUMO

Meat may contain natural, spoilage, and pathogenic microorganisms based on the origin and characteristics of its dietary matrix. Several decontamination substances are used during or after meat processing, which include chlorine, organic acids, inorganic phosphates, benzoates, propionates, bacteriocins, or oxidizers. Unfortunately, traditional decontamination methods are often problematic because of their adverse impact on the quality of the raw carcass or processed meat. The extended shelf-life of foods is a response to the pandemic trend, whereby consumers are more likely to choose durable products that can be stored for a longer period between visits to food stores. This includes changing purchasing habits from "just in time" products "for now" to "just in case" products, a trend that will not fade away with the end of the pandemic. To address these concerns, novel carcass-decontamination technologies, such as ozone, high-pressure processing and cold atmospheric plasma, together with active and clean label ingredients, have been investigated for their potential applications in the meat industry. Processing parameters, such as exposure time and processing intensity have been evaluated for each type of matrix to achieve the maximum reduction of spoilage microorganism counts without affecting the physicochemical, organoleptic, and functional characteristics of the meat products. Furthermore, combined impact (hurdle concept) was evaluated to enhance the understanding of decontamination efficiency without undesirable changes in the meat products. Most of these technologies are beneficial as they are cost-effective, chemical-free, eco-friendly, easy to use, and can treat foods in sealed packages, preventing the product from post-process contamination. Interestingly, their synergistic combination with other hurdle approaches can help to substitute the use of chemical food preservatives, which is an aspect that is currently quite desirable in the majority of consumers. Nonetheless, some of these techniques are difficult to store, requiring a large capital investment for their installation, while a lack of certification for industrial utilization is also problematic. In addition, most of them suffer from a lack of sufficient data regarding their mode of action for inactivating microorganisms and extending shelf-life stability, necessitating a need for further research in this area.

8.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807277

RESUMO

The deactivation of degrading and pectinolytic enzymes is crucial in the fruit juice industry. In commercial fruit juice production, a variety of approaches are applied to inactivate degradative enzymes. One of the most extensively utilized traditional procedures for improving the general acceptability of juice is thermal heat treatment. The utilization of a non-thermal pulsed electric field (PEF) as a promising technology for retaining the fresh-like qualities of juice by efficiently inactivating enzymes and bacteria will be discussed in this review. Induced structural alteration provides for energy savings, reduced raw material waste, and the development of new products. PEF alters the α-helix conformation and changes the active site of enzymes. Furthermore, PEF-treated juices restore enzymatic activity during storage due to either partial enzyme inactivation or the presence of PEF-resistant isozymes. The increase in activity sites caused by structural changes causes the enzymes to be hyperactivated. PEF pretreatments or their combination with other nonthermal techniques improve enzyme activation. For endogenous enzyme inactivation, a clean-label hurdle technology based on PEF and mild temperature could be utilized instead of harsh heat treatments. Furthermore, by substituting or combining conventional pasteurization with PEF technology for improved preservation of both fruit and vegetable juices, PEF technology has enormous economic potential. PEF treatment has advantages not only in terms of product quality but also in terms of manufacturing. Extending the shelf life simplifies production planning and broadens the product range significantly. Supermarkets can be served from the warehouse by increasing storage stability. As storage stability improves, set-up and cleaning durations decrease, and flexibility increases, with only minor product adjustments required throughout the manufacturing process.


Assuntos
Manipulação de Alimentos , Sucos de Frutas e Vegetais , Eletricidade , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Frutas/microbiologia , Pasteurização/métodos , Tecnologia
9.
Plants (Basel) ; 11(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684166

RESUMO

Pumpkin is a well-known multifunctional ingredient in the diet, full of nutrients, and has opened new vistas for scientists during the past years. The fruit of pumpkin including the flesh, seed, and peel are a rich source of primary and secondary metabolites, including proteins, carbohydrates, monounsaturated fatty acids, polyunsaturated fatty acids, carotenoids, tocopherols, tryptophan, delta-7-sterols, and many other phytochemicals. This climber is traditionally used in many countries, such as Austria, Hungary, Mexico, Slovenia, China, Spain, and several Asian and African countries as a functional food and provides health promising properties. Other benefits of pumpkin, such as improving spermatogenesis, wound healing, antimicrobial, anti-inflammatory, antioxidative, anti-ulcerative properties, and treatment of benign prostatic hyperplasia have also been confirmed by researchers. For better drug delivery, nanoemulsions and niosomes made from pumpkin seeds have also been reported as a health promising tool, but further research is still required in this field. This review mainly focuses on compiling and summarizing the most relevant literature to highlight the nutritional value, phytochemical potential, and therapeutic benefits of pumpkin.

10.
Compr Rev Food Sci Food Saf ; 21(4): 3297-3325, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35638360

RESUMO

Seafood products have been one of the main drivers behind the popularity of high-pressure processing (HPP) in the food industry owing to a high demand for fresh ready-to-eat seafood products and food safety. This review provides an overview of the advanced knowledge available on the use of HPP for production of wholesome and highly nutritive clean label fish and shellfish products. Out of 653 explored items, 65 articles published during 2016-2021 were used. Analysis of the literature showed that most of the earlier work evaluated the HPP effect on physicochemical and sensorial properties, and limited information is available on nutritional aspects. HPP has several applications in the seafood industry. Application of HPP (400-600 MPa) eliminates common seafood pathogens, such as Vibrio and Listeria spp., and slows the growth of spoilage microorganisms. Use of cold water as a pressure medium induces minimal changes in sensory and nutritional properties and helps in the development of clean label seafood products. This technology (200-350 MPa) is also useful to shuck oysters, lobsters, crabs, mussels, clams, and scallops to increase recovery of the edible meat. High-pressure helps to preserve organoleptic and functional properties for an extended time during refrigerated storage. Overall, HPP helps seafood manufacturers to maintain a balance between safety, quality, processing efficiency, and regulatory compliance. Further research is required to understand the mechanisms of pressure-induced modifications and clean label strategies to minimize these modifications.


Assuntos
Alimentos Marinhos , Frutos do Mar , Animais , Peixes , Inocuidade dos Alimentos , Carne
11.
Food Res Int ; 150(Pt A): 110792, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865807

RESUMO

The meat industry is continuously facing challenges with food safety, and quality losses caused by thermal processing. This systematic review reports recent clean label approaches in high-pressure production of meat. A literature search was performed using Scopus, Web of Science, PubMed, and Springer databases for studies published in 2018-2021. In this regard, 69 articles were assessed out of 386 explored research articles in the identified stage. The findings indicate that most of the earlier work on high-pressure processing (HPP) focused on physicochemical and sensorial meat quality rather than providing nutritional aspects and clean-label solutions. However, few advanced studies report effective and innovative solutions to develop low salt/fat, and reduced nitrite for raw and cured meat products. HPP could help on increasing the shell life by five times in meat products; however, it depends on the formulation and packaging, etc. HPP can also preserve nutrients by using this non-thermal technology and reduce food waste as once the shelf life of products is known, it easily reduces the shrinkage in the marketplace. This review explores the latest trend of experimental research in high-pressure processing alone, or multi-hurdle techniques employed to increase the effect of clean-label ingredients for enhanced meat safety/quality.


Assuntos
Produtos da Carne , Eliminação de Resíduos , Manipulação de Alimentos , Conservação de Alimentos , Carne
12.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443475

RESUMO

Different parts of a plant (seeds, fruits, flower, leaves, stem, and roots) contain numerous biologically active compounds called "phytoconstituents" that consist of phenolics, minerals, amino acids, and vitamins. The conventional techniques applied to extract these phytoconstituents have several drawbacks including poor performance, low yields, more solvent use, long processing time, and thermally degrading by-products. In contrast, modern and advanced extraction nonthermal technologies such as pulsed electric field (PEF) assist in easier and efficient identification, characterization, and analysis of bioactive ingredients. Other advantages of PEF include cost-efficacy, less time, and solvent consumption with improved yields. This review covers the applications of PEF to obtain bioactive components, essential oils, proteins, pectin, and other important materials from various parts of the plant. Numerous studies compiled in the current evaluation concluded PEF as the best solution to extract phytoconstituents used in the food and pharmaceutical industries. PEF-assisted extraction leads to a higher yield, utilizes less solvents and energy, and it saves a lot of time compared to traditional extraction methods. PEF extraction design should be safe and efficient enough to prevent the degradation of phytoconstituents and oils.


Assuntos
Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Compostos Fitoquímicos , Indústria de Processamento de Alimentos , Solventes/química , Tecnologia Farmacêutica
13.
Foods ; 10(6)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203089

RESUMO

The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.

14.
Front Nutr ; 8: 778155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127783

RESUMO

Nanomaterials exist as potential biocompatible materials in nature and are being synthesized to provide extraordinary characteristics in various food industry sectors. Synthesis of biocompatible nanomaterials requires modification in the shape, density, and size of nanomaterials. Biocompatible nanomaterials are synthesized to reduce toxicity, decrease adverse effects in the gastrointestinal tract, and enhance immune response. Nanomaterials can target organs and tissues. Nanomaterials are found to be effectively compatible by interacting with functional foods and nutraceuticals. Applications of these nanomaterials are novel strategies in food industries such as food safety, food processing, food quality, food packaging, and food labeling. Various functions like detection of toxins and pathogens; production of biocompatible packaging; enhancement in color, flavor, and aroma; processing edible film, and sensing authenticity of food product are being accomplished with no toxicity. This review provides a systematic study on the biocompatibility of nanomaterials. It highlights the synthesis of biocompatible nanomaterials and advanced functions of these nanomaterials in the production area, processing industry, safety improvement, quality control, edible packaging films, biocompatibility, current developments, legislations and regulations for Nano-products, health and safety concerns, toxicity and public perceptions for use of nanomaterials.

15.
Carbohydr Polym ; 254: 117294, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357863

RESUMO

The physicochemical properties and structural changes of potato starch esterified with octenyl succinic anhydride (OSA) assisted with pulsed electric field (PEF) were investigated. Results showed that PEF treatment during esterification resulted in a significant modification of pasting properties. The pasting temperature at 2-6 kV/cm reduced by 7.6-15.1 °C for PEF-assisted OSA starches but only by 3 °C for OSA modified starch without PEF treatment as compared to that of native starch. PEF-assisted esterification could reduce the reaction time and improve the reaction efficiency over the control by 6.1-39.1 %. A novel schematic model on structure-functionality relationship for PEF-assisted OSA modified starch was proposed. Structural disorganizations of starch induced lower pasting temperature and paste viscosity. The results suggest that PEF could be a potential eco-friendly and cost-effective physical technique to prepare starch products with desired paste behaviors and to broaden its application area especially in papermaking and textile industries.


Assuntos
Eletricidade , Solanum tuberosum/química , Amido/análogos & derivados , Esterificação , Ligação de Hidrogênio , Estrutura Molecular , Pomadas , Tamanho da Partícula , Amido/química , Relação Estrutura-Atividade , Anidridos Succínicos/química , Temperatura , Viscosidade
16.
Food Sci Nutr ; 8(5): 2490-2500, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32405405

RESUMO

This study was designed to explore the impacts of the pulsed electric field (PEF; 2 to 6 kV/cm; a number of pulses 25 and 50) on wheat (Tritium aestivum L.) seeds before imbibition to improve the germination, growth, and their nutritional profile in juice form. It was observed that the PEF treatment at 6 kV/cm at 50 pulses increased water uptake, germination of seeds, and growth parameters of seedlings. A significant increase in total phenolic contents, DPPH, chlorophylls, carotenoids, soluble proteins, minerals, and amino acids in PEF-treated seeds plantlets juice as compared to the untreated seeds plantlets juice was observed. The results indicate that the PEF may effectively stimulate the growth of the wheat kernels and positively affect their metabolism, optimize the nutrients, and enhance the strength of the wheat kernels plantlets.

17.
J Food Sci ; 85(4): 1018-1026, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32222053

RESUMO

In this study, the combined effect of ultrasound (US) and pulsed electric field (PEF) techniques was analyzed for the quality improvement and microbial safety of spinach juice. The spinach juice was treated with US at frequency of 40 kHz, radiating power of 200 W below 30 ± 2 °C temperature for 21 min in ultrasonic bath cleaner, and PEF treatment (pulse frequency: 1 kHz, flow rate: 60 mL/min, temperature: 30 ± 2 °C, time: 335 µs, electric field strength 9 kV/cm) was done. In results, the combined (US-PEF) treatment attained the highest value of minerals and total free amino acids as compared to US or PEF treatment alone. US-PEF treatment significantly reduced the total plate count (3.83 to 1.97 log CFU/mL), E. coli/Coliform (1.90 to 0.75 log CFU/mL) and yeast and mold (4.23 to 2.22 log CFU/mL). Fourier-transform infrared spectroscopy (FT-IR) spectra showed that all nonthermal treatments led to a higher concentration of carbonyl compounds rather generate new carbonyl compounds. US-PEF treatment significantly reduced the particle size. The rheology of spinach juice was drastically changed by all nonthermal techniques, indicating non-Newtonian modal accompanied by a decrease of consistency index (K), apparent viscosity (η), and increase of flow behavior (n). Overall, the improved quality of spinach juice shows the suitability of both technologies for industrial applications despite the variations in rheological properties. PRACTICAL APPLICATION: Nowadays, nonthermal technologies like US and PEF are being used to enhance the nutritional quality and stability of different fruits and vegetable juices. The current research shows that US-PEF application can enhance the free amino acids and mineral contents while significantly decrease microbial activities and particle size. The rheology of spinach juice can be dramatically changed, through the reduction of consistency index (K), apparent viscosity (η) and elevation of flow behavior (n). The results of this research proposed that US-PEF treatment can be a more suitable nonthermal application to enhance the quality of spinach juice at an industrial scale.


Assuntos
Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Spinacia oleracea/química , Contagem de Colônia Microbiana , Eletricidade , Escherichia coli , Sucos de Frutas e Vegetais/microbiologia , Controle de Qualidade , Espectroscopia de Infravermelho com Transformada de Fourier , Spinacia oleracea/microbiologia , Temperatura , Viscosidade
18.
Compr Rev Food Sci Food Saf ; 17(2): 437-457, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33350080

RESUMO

Fruit and vegetable juices are rich sources of nutrients that support microbiological growth and ultimately undergo rapid deterioration of safety and quality. The loss of nutritional quality of juices due to intensive thermal processing is a major problem encountered during the treatment of commercially preserved liquid foods. Conventional thermal processing technologies inactivate microorganisms and enzymes and extend the shelf life of foods but exert negative effects on nutritional and organoleptic properties of juices, for example, a loss of vitamins, of a desirable flavor, and of bioactive compounds and development of different sensory profiles as a result of heating. Nonthermal technologies including ultrasonication, a pulsed electric field, high-pressure processing, irradiation, and their combinations are suitable alternatives for achieving the same preservation effect without the adverse effects of heat on the quality of juices and meet consumer demand for clean-label, safe, and wholesome products without compromising their nutritional properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...