Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834530

RESUMO

Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl-/-) and platelet-specific Mgl-deficient (platMgl-/-) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl3-induced injury was markedly reduced in Mgl-/- mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl-/- mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl-/- mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.


Assuntos
Monoacilglicerol Lipases , Monoglicerídeos , Animais , Camundongos , Endocanabinoides/metabolismo , Lipólise , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/genética
2.
Front Cell Dev Biol ; 10: 918691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158213

RESUMO

Endoplasmic reticulum (ER) functions critically depend on a suitable ATP supply to fuel ER chaperons and protein trafficking. A disruption of the ability of the ER to traffic and fold proteins leads to ER stress and the unfolded protein response (UPR). Using structured illumination super-resolution microscopy, we revealed increased stability and lifetime of mitochondrial associated ER membranes (MAM) during ER stress. The consequent increase of basal mitochondrial Ca2+ leads to increased TCA cycle activity and enhanced mitochondrial membrane potential, OXPHOS, and ATP generation during ER stress. Subsequently, OXPHOS derived ATP trafficking towards the ER was increased. We found that the increased lifetime and stability of MAMs during ER stress depended on the mitochondrial fusion protein Mitofusin2 (MFN2). Knockdown of MFN2 blunted mitochondrial Ca2+ effect during ER stress, switched mitochondrial F1FO-ATPase activity into reverse mode, and strongly reduced the ATP supply for the ER during ER stress. These findings suggest a critical role of MFN2-dependent MAM stability and lifetime during ER stress to compensate UPR by strengthening ER ATP supply by the mitochondria.

3.
Biomolecules ; 12(6)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35740887

RESUMO

Sigma-1 receptor (S1R) is an important endoplasmic reticulum chaperone with various functions in health and disease. The purpose of the current work was to elucidate the involvement of S1R in cancer energy metabolism under its basal, activated, and inactivated states. For this, two cancer cell lines that differentially express S1R were treated with S1R agonist, (+)-SKF10047, and antagonist, BD1047. The effects of the agonist and antagonist on cancer energy metabolism were studied using single-cell fluorescence microscopy analysis of real-time ion and metabolite fluxes. Our experiments revealed that S1R activation by agonist increases mitochondrial bioenergetics of cancer cells while decreasing their reliance on aerobic glycolysis. S1R antagonist did not have a major impact on mitochondrial bioenergetics of tested cell lines but increased aerobic glycolysis of S1R expressing cancer cell line. Our findings suggest that S1R plays an important role in cancer energy metabolism and that S1R ligands can serve as tools to modulate it.


Assuntos
Neoplasias , Receptores sigma , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores sigma/agonistas , Receptores sigma/metabolismo , Receptor Sigma-1
4.
Commun Biol ; 5(1): 76, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058562

RESUMO

In contrast to long-term metabolic reprogramming, metabolic rewiring represents an instant and reversible cellular adaptation to physiological or pathological stress. Ca2+ signals of distinct spatio-temporal patterns control a plethora of signaling processes and can determine basal cellular metabolic setting, however, Ca2+ signals that define metabolic rewiring have not been conclusively identified and characterized. Here, we reveal the existence of a basal Ca2+ flux originating from extracellular space and delivered to mitochondria by Ca2+ leakage from inositol triphosphate receptors in mitochondria-associated membranes. This Ca2+ flux primes mitochondrial metabolism by maintaining glycolysis and keeping mitochondria energized for ATP production. We identified citrin, a well-defined Ca2+-binding component of malate-aspartate shuttle in the mitochondrial intermembrane space, as predominant target of this basal Ca2+ regulation. Our data emphasize that any manipulation of this ubiquitous Ca2+ system has the potency to initiate metabolic rewiring as an instant and reversible cellular adaptation to physiological or pathological stress.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Homeostase , Transportadores de Ânions Orgânicos/metabolismo , Linhagem Celular , Humanos
5.
Free Radic Biol Med ; 181: 197-208, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091061

RESUMO

Thyroid hormones act as master regulators of cellular metabolism. Thereby, the biologically active triiodothyronine (T3) induces the expression of genes to enhance mitochondrial metabolic function. Notably, Ca2+ ions are necessary for the activity of dehydrogenases of the tricarboxylic acid cycle and, thus, mitochondrial respiration. We investigated whether treating HeLa cells with T3 causes alterations in mitochondrial Ca2+ ([Ca2+]mito) levels. Real-time measurements by fluorescence microscopy revealed that treatment with T3 for 3 h induces a significant increase in basal [Ca2+]mito levels and [Ca2+]mito uptake upon the depletion of the endoplasmic reticulum (ER) Ca2+ store, while cytosolic Ca2+ levels remained unchanged. T3 incubation was found to upregulate mRNA expression levels of uncoupling proteins 2 and 3 (UCP2, UCP3) and of protein arginine methyltransferase 1 (PRMT1). Live-cell imaging revealed that T3-induced enhancement of mitochondrial Ca2+ uptake depends on the mitochondrial Ca2+ uniporter (MCU), UCP2, and PRMT1 that are essential for increased mitochondrial ATP ([ATP]mito) production after T3 treatment. Besides, increased [Ca2+]mito and [ATP]mito levels correlated with enhanced production of reactive oxygen species (ROS) in mitochondria. Notably, ROS scavenging causes mitochondrial Ca2+ elevation and outplays the impact of T3 on [Ca2+]mito homeostasis. Based on these results, we assume that thyroid hormones adjust [Ca2+]mito homeostasis by modulating the UCP2- and PRMT1-balanced [Ca2+]mito uptake via MCU in case of physiological ROS levels to convey their impact on mitochondrial ATP and ROS production.


Assuntos
Cálcio , Mitocôndrias , Tri-Iodotironina , Cálcio/metabolismo , Células HeLa , Homeostase , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Tri-Iodotironina/farmacologia , Proteína Desacopladora 2/metabolismo
6.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360954

RESUMO

Ca2+-dependent gene regulation controls several functions to determine the fate of the cells. Proteins of the nuclear factor of activated T-cells (NFAT) family are Ca2+ sensitive transcription factors that control the cell growth, proliferation and insulin secretion in ß-cells. Translocation of NFAT proteins to the nucleus occurs in a sequence of events that starts with activating calmodulin-dependent phosphatase calcineurin in a Ca2+-dependent manner, which dephosphorylates the NFAT proteins and leads to their translocation to the nucleus. Here, we examined the role of IP3-generating agonists and near-UV light in the induction of NFATc3 migration to the nucleus in the pancreatic ß-cell line INS-1. Our results show that IP3 generation yields cytosolic Ca2+ rise and NFATc3 translocation. Moreover, near-UV light exposure generates reactive oxygen species (ROS), resulting in cytosolic Ca2+ spiking via the L-type Ca2+ channel and triggers NFATc3 translocation to the nucleus. Using the mitochondria as a Ca2+ buffering tool, we showed that ROS-induced cytosolic Ca2+ spiking, not the ROS themselves, was the triggering mechanism of nuclear import of NFATc3. Collectively, this study reveals the mechanism of near-UV light induced NFATc3 migration.


Assuntos
Sinalização do Cálcio , Fatores de Transcrição NFATC/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta , Animais , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular Tumoral , Inositol 1,4,5-Trifosfato/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos da radiação , Ratos
7.
Metabolites ; 11(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206832

RESUMO

The endoplasmic reticulum (ER) is a complex, multifunctional organelle of eukaryotic cells and responsible for the trafficking and processing of nearly 30% of all human proteins. Any disturbance to these processes can cause ER stress, which initiates an adaptive mechanism called unfolded protein response (UPR) to restore ER functions and homeostasis. Mitochondrial ATP production is necessary to meet the high energy demand of the UPR, while the molecular mechanisms of ER to mitochondria crosstalk under such stress conditions remain mainly enigmatic. Thus, better understanding the regulation of mitochondrial bioenergetics during ER stress is essential to combat many pathologies involving ER stress, the UPR, and mitochondria. This article investigates the role of Sigma-1 Receptor (S1R), an ER chaperone, has in enhancing mitochondrial bioenergetics during early ER stress using human neuroblastoma cell lines. Our results show that inducing ER stress with tunicamycin, a known ER stressor, greatly enhances mitochondrial bioenergetics in a time- and S1R-dependent manner. This is achieved by enhanced ER Ca2+ leak directed towards mitochondria by S1R during the early phase of ER stress. Our data point to the importance of S1R in promoting mitochondrial bioenergetics and maintaining balanced H2O2 metabolism during early ER stress.

8.
Mitochondrion ; 55: 164-173, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33069910

RESUMO

Considering the versatile functions attributed to uncoupling protein 2 (UCP2) in health and disease, a profound understanding of the protein's molecular actions under physiological and pathophysiological conditions is indispensable. This review aims to revisit and shed light on the fundamental molecular functions of UCP2 in mitochondria, with particular emphasis on its intricate role in regulating mitochondrial calcium (Ca2+) uptake. UCP2's modulating effect on various vital processes in mitochondria makes it a crucial regulator of mitochondrial homeostasis in health and disease.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteína Desacopladora 2/metabolismo , Células HeLa , Homeostase , Humanos
9.
Cell Physiol Biochem ; 53(3): 573-586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31529929

RESUMO

BACKGROUND/AIMS: In our recent work, the importance of GSK3ß-mediated phosphorylation of presenilin-1 as crucial process to establish a Ca2+ leak in the endoplasmic reticulum and, subsequently, the pre-activation of resting mitochondrial activity in ß-cells was demonstrated. The present work is a follow-up and reveals the importance of GSK3ß-phosphorylated presenilin-1 for responsiveness of pancreatic islets and ß-cells to elevated glucose in terms of cytosolic Ca2+ spiking and insulin secretion. METHODS: Freshly isolated pancreatic islets and the two pancreatic ß-cell lines INS-1 and MIN-6 were used. Cytosolic Ca2+ was fluorometrically monitored using Fura-2/AM and cellular insulin content and secretion were measured by ELISA. RESULTS: Our data strengthened our previous findings of the existence of a presenilin-1-mediated ER-Ca2+ leak in ß-cells, since a reduction of presenilin-1 expression strongly counteracted the ER Ca2+ leak. Furthermore, our data revealed that cytosolic Ca2+ spiking upon administration of high D-glucose was delayed in onset time and strongly reduced in amplitude and frequency upon siRNA-mediated knock-down of presenilin-1 or the inhibition of GSK3ß in the pancreatic ß-cells. Moreover, glucose-triggered initial insulin secretion disappeared by depletion from presenilin-1 and inhibition of GSK3ß in the pancreatic ß-cells and isolated pancreatic islets, respectively. CONCLUSION: These data complement our previous work and demonstrate that the sensitivity of pancreatic islets and ß-cells to glucose illustrated as glucose-triggered cytosolic Ca2+ spiking and initial but not long-lasting insulin secretion crucially depends on a strong ER Ca2+ leak that is due to the phosphorylation of presenilin-1 by GSK3ß, a phenomenon that might be involved in the development of type 2 diabetes.


Assuntos
Retículo Endoplasmático/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Presenilina-1/metabolismo , Animais , Antracenos/farmacologia , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , MAP Quinase Quinase 4/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
10.
Nat Commun ; 10(1): 3732, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427612

RESUMO

Recently identified core proteins (MICU1, MCU, EMRE) forming the mitochondrial Ca2+ uniporter complex propelled investigations into its physiological workings. Here, we apply structured illumination microscopy to visualize and localize these proteins in living cells. Our data show that MICU1 localizes at the inner boundary membrane (IBM) due to electrostatic interaction of its polybasic domain. Moreover, this exclusive localization of MICU1 is important for the stability of cristae junctions (CJ), cytochrome c release and mitochondrial membrane potential. In contrast to MICU1, MCU and EMRE are homogeneously distributed at the inner mitochondrial membrane under resting conditions. However, upon Ca2+ elevation MCU and EMRE dynamically accumulate at the IBM in a MICU1-dependent manner. Eventually, our findings unveil an essential function of MICU1 in CJ stabilization and provide mechanistic insights of how sophistically MICU1 controls the MCU-Complex while maintaining the structural mitochondrial membrane framework.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sinalização do Cálcio/fisiologia , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Membranas Mitocondriais/metabolismo
11.
ACS Sens ; 4(4): 883-891, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30864782

RESUMO

Distinct subcellular pH levels, especially in lysosomes and endosomes, are essential for the degradation, modification, sorting, accumulation, and secretion of macromolecules. Here, we engineered a novel genetically encoded pH probe by fusing the pH-stable cyan fluorescent protein (FP) variant, mTurquoise2, to the highly pH-sensitive enhanced yellow fluorescent protein, EYFP. This approach yielded a ratiometric biosensor-referred to as pH-Lemon-optimized for live imaging of distinct pH conditions within acidic cellular compartments. Protonation of pH-Lemon under acidic conditions significantly decreases the yellow fluorescence while the cyan fluorescence increases due to reduced Förster resonance energy transfer (FRET) efficiency. Because of its freely reversible and ratiometric responses, pH-Lemon represents a fluorescent biosensor for pH dynamics. pH-Lemon also shows a sizable pH-dependent fluorescence lifetime change that can be used in fluorescence lifetime imaging microscopy as an alternative observation method for the study of pH in acidic cellular compartments. Fusion of pH-Lemon to the protein microtubule-associated protein 1A/1B-light chain 3B (LC3B), a specific marker of autophagic membranes, resulted in its targeting within autolysosomes of HeLa cells. Moreover, fusion of pH-Lemon to a glycophosphatidylinositol (GPI) anchor allowed us to monitor the entire luminal space of the secretory pathway and the exoplasmic leaflet of the plasma membrane. Utilizing this new pH probe, we revealed neutral and acidic vesicles and substructures inside cells, highlighting compartments of distinct pH throughout the endomembrane system. These data demonstrate, that this novel pH sensor, pH-Lemon, is very suitable for the study of local pH dynamics of subcellular microstructures in living cells.


Assuntos
Proteínas de Bactérias/química , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Organelas/metabolismo , Proteínas Recombinantes de Fusão/química , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Glicosilfosfatidilinositóis , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência/métodos
12.
Cell Physiol Biochem ; 52(1): 57-75, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30790505

RESUMO

BACKGROUND/AIMS: In pancreatic ß-cells, the intracellular Ca²âº homeostasis is an essential regulator of the cells major functions. The endoplasmic reticulum (ER) as interactive intracellular Ca²âº store balances cellular Ca²âº. In this study basal ER Ca²âº homeostasis was evaluated in order to reveal potential ß-cell-specificity of ER Ca²âº handling and its consequences for mitochondrial Ca²âº, ATP and respiration. METHODS: The two pancreatic cell lines INS-1 and MIN-6, freshly isolated pancreatic islets, and the two non-pancreatic cell lines HeLA and EA.hy926 were used. Cytosolic, ER and mitochondrial Ca²âº and ATP measurements were performed using single cell fluorescence microscopy and respective (genetically-encoded) sensors/dyes. Mitochondrial respiration was monitored by respirometry. GSK3ß activity was measured with ELISA. RESULTS: An atypical ER Ca²âº leak was observed exclusively in pancreatic islets and ß-cells. This continuous ER Ca²âº efflux is directed to mitochondria and increases basal respiration and organellar ATP levels, is established by GSK3ß-mediated phosphorylation of presenilin-1, and is prevented by either knockdown of presenilin-1 or an inhibition/knockdown of GSK3ß. Expression of a presenlin-1 mutant that mimics GSK3ß-mediated phosphorylation established a ß-cell-like ER Ca²âº leak in HeLa and EA.hy926 cells. The ER Ca²âº loss in ß-cells was compensated at steady state by Ca²âº entry that is linked to the activity of TRPC3. CONCLUSION: Pancreatic ß-cells establish a cell-specific ER Ca²âº leak that is under the control of GSK3ß and directed to mitochondria, thus, reflecting a cell-specific intracellular Ca²âº handling for basal mitochondrial activity.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Presenilina-1/metabolismo , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Glicogênio Sintase Quinase 3 beta/genética , Células HeLa , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Fosforilação , Presenilina-1/genética , Ratos
13.
Methods Mol Biol ; 1843: 175-187, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30203287

RESUMO

The expression of chimeras that consist of a fluorescent protein (FP) conjugated with a protein of interest provides the ability to visualize, track, and quantify the subcellular localization and dynamics of specific proteins in biological samples. Array confocal laser scanning microscopy is an eminently suitable technique for live-cell imaging of FP-tagged fusion proteins. Here, we describe real-time monitoring of the subcellular dynamics of the stromal-interacting molecule 1 (STIM1) and Orai1, the key protagonists of store-operated Ca2+ entry (SOCE) under resting conditions, and upon Ca2+ mobilization from the endoplasmic reticulum (ER).


Assuntos
Microscopia Confocal , Imagem Molecular , Moléculas de Interação Estromal/metabolismo , Cálcio/metabolismo , Expressão Gênica , Ordem dos Genes , Genes Reporter , Vetores Genéticos/genética , Processamento de Imagem Assistida por Computador , Espaço Intracelular/metabolismo , Imagem Molecular/métodos , Transporte Proteico , Software , Moléculas de Interação Estromal/genética , Imagem com Lapso de Tempo , Transfecção
14.
Cell Death Differ ; 25(4): 767-783, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29230001

RESUMO

The loss of lipid homeostasis can lead to lipid overload and is associated with a variety of disease states. However, little is known as to how the disruption of lipid regulation or lipid overload affects cell survival. In this study we investigated how excess diacylglycerol (DG), a cardinal metabolite suspected to mediate lipotoxicity, compromises the survival of yeast cells. We reveal that increased DG achieved by either genetic manipulation or pharmacological administration of 1,2-dioctanoyl-sn-glycerol (DOG) triggers necrotic cell death. The toxic effects of DG are linked to glucose metabolism and require a functional Rim101 signaling cascade involving the Rim21-dependent sensing complex and the activation of a calpain-like protease. The Rim101 cascade is an established pathway that triggers a transcriptional response to alkaline or lipid stress. We propose that the Rim101 pathway senses DG-induced lipid perturbation and conducts a signaling response that either facilitates cellular adaptation or triggers lipotoxic cell death. Using established models of lipotoxicity, i.e., high-fat diet in Drosophila and palmitic acid administration in cultured human endothelial cells, we present evidence that the core mechanism underlying this calpain-dependent lipotoxic cell death pathway is phylogenetically conserved.


Assuntos
Diglicerídeos/farmacologia , Modelos Biológicos , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Drosophila melanogaster , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Necrose , Ácido Palmítico/farmacologia , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Oncotarget ; 8(46): 80278-80285, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29113301

RESUMO

Cancer cells have developed unique strategies to meet their high energy demand. Therefore, they have established a setting of Ca2+-triggered high mitochondrial activity. But mitochondrial Ca2+ uptake has to be strictly controlled to avoid mitochondrial Ca2+ overload that would cause apoptotic cell death. Methylation by protein arginine methyl transferase 1 (PRMT1) desensitizes the mitochondrial Ca2+ uptake machinery and reduces mitochondrial Ca2+ accumulation in cancer cells. In case of PRMT1-driven methylation, proper mitochondrial Ca2+ uptake is reestablished by increased activity of uncoupling protein 2 (UCP2), pointing to an importance of these proteins for cancer cell survival and activity. Accordingly, in this study we investigated the impact of UCP2 and PRMT1 on the fate of human lung cancer cells (A549, Calu-3 and H1299) as well as on patients suffering from lung carcinoma. We show that combined overexpression of UCP2 and PRMT1 significantly enhances viability, proliferation as well as mitochondrial respiration. In line with these findings, the overall survival probability of lung carcinoma patients with high mRNA expression levels of UCP2 and PRMT1 is strongly reduced. Furthermore, analysis via The Cancer Genome Atlas (TCGA) reveals upregulation of both proteins, UCP2 and PRMT1, as common feature of various cancer types. These findings suggest that proper mitochondrial Ca2+ uptake is essential for devastating tumor growth, and highlight the importance of a tightly controlled mitochondrial Ca2+ uptake to ensure proper ATP biosynthesis while avoiding dangerous mitochondrial Ca2+ overload. By that, the study unveils proteins of the mitochondrial Ca2+ uptake as potential targets for cancer treatment.

16.
Nat Commun ; 8(1): 1422, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127288

RESUMO

Changes in intra- and extracellular potassium ion (K+) concentrations control many important cellular processes and related biological functions. However, our current understanding of the spatiotemporal patterns of physiological and pathological K+ changes is severely limited by the lack of practicable detection methods. We developed K+-sensitive genetically encoded, Förster resonance energy transfer-(FRET) based probes, called GEPIIs, which enable quantitative real-time imaging of K+ dynamics. GEPIIs as purified biosensors are suitable to directly and precisely quantify K+ levels in different body fluids and cell growth media. GEPIIs expressed in cells enable time-lapse and real-time recordings of global and local intracellular K+ signals. Hitherto unknown Ca2+-triggered, organelle-specific K+ changes were detected in pancreatic beta cells. Recombinant GEPIIs also enabled visualization of extracellular K+ fluctuations in vivo with 2-photon microscopy. Therefore, GEPIIs are relevant for diverse K+ assays and open new avenues for live-cell K+ imaging.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes , Potássio/metabolismo , Animais , Sistemas Computacionais , Líquido Extracelular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Técnicas In Vitro , Líquido Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Potássio/sangue , Potássio/urina
17.
J Vis Exp ; (121)2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28362417

RESUMO

Nitric Oxide (NO•) is a small radical, which mediates multiple important cellular functions in mammals, bacteria and plants. Despite the existence of a large number of methods for detecting NO• in vivo and in vitro, the real-time monitoring of NO• at the single-cell level is very challenging. The physiological or pathological effects of NO• are determined by the actual concentration and dwell time of this radical. Accordingly, methods that allow the single-cell detection of NO• are highly desirable. Recently, we expanded the pallet of NO• indicators by introducing single fluorescent protein-based genetically encoded nitric oxide (NO•) probes (geNOps) that directly respond to cellular NO• fluctuations and, hence, addresses this need. Here we demonstrate the usage of geNOps to assess intracellular NO• signals in response to two different chemical NO•-liberating molecules. Our results also confirm that freshly prepared 3-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-propanamine (NOC-7) has a much higher potential to evoke change in intracellular NO• levels as compared with the inorganic NO• donor sodium nitroprusside (SNP). Furthermore, dual-color live-cell imaging using the green geNOps (G-geNOp) and the chemical Ca2+ indicator fura-2 was performed to visualize the tight regulation of Ca2+-dependent NO• formation in single endothelial cells. These representative experiments demonstrate that geNOps are suitable tools to investigate the real-time generation and degradation of single-cell NO• signals in diverse experimental setups.


Assuntos
Células Endoteliais/metabolismo , Corantes Fluorescentes/metabolismo , Óxido Nítrico/metabolismo , Animais , Células Cultivadas , Dependovirus , Fura-2/química , Vetores Genéticos , Células HEK293 , Humanos , Hidrazinas/farmacologia , Microscopia de Fluorescência/métodos , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Parvovirinae/genética
18.
Nat Commun ; 7: 12897, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27642082

RESUMO

Recent studies revealed that mitochondrial Ca(2+) channels, which control energy flow, cell signalling and death, are macromolecular complexes that basically consist of the pore-forming mitochondrial Ca(2+) uniporter (MCU) protein, the essential MCU regulator (EMRE), and the mitochondrial Ca(2+) uptake 1 (MICU1). MICU1 is a regulatory subunit that shields mitochondria from Ca(2+) overload. Before the identification of these core elements, the novel uncoupling proteins 2 and 3 (UCP2/3) have been shown to be fundamental for mitochondrial Ca(2+) uptake. Here we clarify the molecular mechanism that determines the UCP2/3 dependency of mitochondrial Ca(2+) uptake. Our data demonstrate that mitochondrial Ca(2+) uptake is controlled by protein arginine methyl transferase 1 (PRMT1) that asymmetrically methylates MICU1, resulting in decreased Ca(2+) sensitivity. UCP2/3 normalize Ca(2+) sensitivity of methylated MICU1 and, thus, re-establish mitochondrial Ca(2+) uptake activity. These data provide novel insights in the complex regulation of the mitochondrial Ca(2+) uniporter by PRMT1 and UCP2/3.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Proteína Desacopladora 2/metabolismo , Cálcio/metabolismo , Células HeLa , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Proteína Desacopladora 3/metabolismo
19.
Nat Commun ; 7: 10623, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842907

RESUMO

Nitric oxide () is a free radical with a wide range of biological effects, but practically impossible to visualize in single cells. Here we report the development of novel multicoloured fluorescent quenching-based probes by fusing a bacteria-derived -binding domain close to distinct fluorescent protein variants. These genetically encoded probes, referred to as geNOps, provide a selective, specific and real-time read-out of cellular dynamics and, hence, open a new era of bioimaging. The combination of geNOps with a Ca(2+) sensor allowed us to visualize and Ca(2+) signals simultaneously in single endothelial cells. Moreover, targeting of the probes was used to detect signals within mitochondria. The geNOps are useful new tools to further investigate and understand the complex patterns of signalling on the single (sub)cellular level.


Assuntos
Células Endoteliais/metabolismo , Corantes Fluorescentes/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Sinalização do Cálcio , Embrião de Galinha , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Ventrículos do Coração/citologia , Humanos , Proteínas Luminescentes/metabolismo , Transdução de Sinais
20.
Sci Rep ; 5: 15602, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26489515

RESUMO

Mitochondrial Ca(2+) uptake is a vital process that controls distinct cell and organelle functions. Mitochondrial calcium uptake 1 (MICU1) was identified as key regulator of the mitochondrial Ca(2+) uniporter (MCU) that together with the essential MCU regulator (EMRE) forms the mitochondrial Ca(2+) channel. However, mechanisms by which MICU1 controls MCU/EMRE activity to tune mitochondrial Ca(2+) signals remain ambiguous. Here we established a live-cell FRET approach and demonstrate that elevations of cytosolic Ca(2+) rearranges MICU1 multimers with an EC50 of 4.4 µM, resulting in activation of mitochondrial Ca(2+) uptake. MICU1 rearrangement essentially requires the EF-hand motifs and strictly correlates with the shape of cytosolic Ca(2+) rises. We further show that rearrangements of MICU1 multimers were independent of matrix Ca(2+) concentration, mitochondrial membrane potential, and expression levels of MCU and EMRE. Our experiments provide novel details about how MCU/EMRE is regulated by MICU1 and an original approach to investigate MCU/EMRE activation in intact cells.


Assuntos
Canais de Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Citosol/metabolismo , Células HEK293 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Multimerização Proteica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...