Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Food Microbiol ; 119: 104430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225039

RESUMO

The facultative intracellular bacterium Listeria monocytogenes (L. monocytogenes) is the causative agent of listeriosis, a severe invasive illness. This ubiquitous species is widely distributed in the environment, but infection occurs almost exclusively through ingestion of contaminated food. The pork production sector has been heavily affected by a series of L. monocytogenes-related foodborne outbreaks in the past around the world. Ready-to-eat (RTE) pork products represent one of the main food sources for strong-evidence listeriosis outbreaks. This pathogen is known to be present throughout the entire pig and pork production chain. Some studies hypothesized that the main source of contamination in final pork products was either living pigs or the food-processing environment. A detailed genomic picture of L. monocytogenes can provide a renewed understanding of the routes of contamination from pig farms to the final products. This review provides an overview of the prevalence, the genomic diversity and the genetic background linked to virulence of L. monocytogenes along the entire pig and pork production chain, from farm to fork.


Assuntos
Listeria monocytogenes , Listeriose , Carne de Porco , Carne Vermelha , Animais , Suínos , Listeria monocytogenes/genética , Microbiologia de Alimentos , Prevalência , Listeriose/epidemiologia , Genômica , Contaminação de Alimentos/análise
2.
Microbiol Spectr ; 11(3): e0395422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158749

RESUMO

Listeria monocytogenes is a ubiquitous bacterium that causes a foodborne illness, listeriosis. Most strains can be classified into major clonal complexes (CCs) that account for the majority of outbreaks and sporadic cases in Europe. In addition to the 20 CCs known to account for the majority of human and animal clinical cases, 10 CCs are frequently reported in food production, thereby posing a serious challenge for the agrifood industry. Therefore, there is a need for a rapid and reliable method to identify these 30 major CCs. The high-throughput real-time PCR assay presented here provides accurate identification of these 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations, along with the molecular serogroup of a strain. Based on the BioMark high-throughput real-time PCR system, our assay analyzes 46 strains against 40 real-time PCR arrays in a single experiment. This European study (i) designed the assay from a broad panel of 3,342 L. monocytogenes genomes, (ii) tested its sensitivity and specificity on 597 sequenced strains collected from 24 European countries, and (iii) evaluated its performance in the typing of 526 strains collected during surveillance activities. The assay was then optimized for conventional multiplex real-time PCR for easy implementation in food laboratories. It has already been used for outbreak investigations. It represents a key tool for assisting food laboratories to establish strain relatedness with human clinical strains during outbreak investigations and for helping food business operators by improving their microbiological management plans. IMPORTANCE Multilocus sequence typing (MLST) is the reference method for Listeria monocytogenes typing but is expensive and takes time to perform, from 3 to 5 days for laboratories that outsource sequencing. Thirty major MLST clonal complexes (CCs) are circulating in the food chain and are currently identifiable only by sequencing. Therefore, there is a need for a rapid and reliable method to identify these CCs. The method presented here enables the rapid identification, by real-time PCR, of 30 CCs and eight genetic subdivisions within four CCs, splitting each CC into two distinct subpopulations. The assay was then optimized on different conventional multiplex real-time PCR systems for easy implementation in food laboratories. The two assays will be used for frontline identification of L. monocytogenes isolates prior to whole-genome sequencing. Such assays are of great interest for all food industry stakeholders and public agencies for tracking L. monocytogenes food contamination.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Humanos , Listeria monocytogenes/genética , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase em Tempo Real , Listeriose/diagnóstico , Listeriose/epidemiologia , Listeriose/microbiologia , Europa (Continente)/epidemiologia , Microbiologia de Alimentos
3.
Microbes Environ ; 37(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36372433

RESUMO

The presence of Listeria monocytogenes in piggery effluents intended for irrigation crops may be a source of bacterial dissemination in agriculture. The occurrence and diversity of L. monocytogenes in the farm environment were examined in two pig manure treatment systems (S1 and S2). Samples collected over the course of one year consisted of manure, the liquid fraction of treated manure (lagoon effluent), and soil surrounding the lagoon. L. monocytogenes was enumerated using the Most Probable Number (MPN) method, serotyped by PCR, genotyped by pulsed-field gel electrophoresis (PFGE), and sequenced for multilocus sequence typing (MLST). L. monocytogenes was detected in 92% of manure samples and in approximately 50% of lagoon effluent and soil samples. Concentrations ranged between 5 and 103 MPN 100| |mL-1. Serogroups IIa, IIb, and IVb were identified. Diversity was high with 44 PFGE profiles (252 isolates) and 17 clonal complexes (CCs) (96 isolates) with higher diversity in manure at site S1 supplied by four farms. Some PFGE profiles and CCs identified in manure or in pig feces from a previous study were also detected in lagoons and/or soil, reflecting pig L. monocytogenes circulation throughout the manure treatment and in the vicinity of the sampling sites. However, some PFGE profiles and CCs were only found in the lagoon and/or in soil, suggesting an origin other than pigs. The present study highlights the limited ability of biological treatments to eliminate L. monocytogenes from pig manure. The persistence of some PFGE profiles and CCs throughout the year in the lagoon and soil shows the ability of L. monocytogenes to survive in this type of environment.


Assuntos
Listeria monocytogenes , Suínos , Animais , Listeria monocytogenes/genética , Esterco , Tipagem de Sequências Multilocus , Eletroforese em Gel de Campo Pulsado , França , Solo
4.
Front Microbiol ; 13: 864576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663878

RESUMO

The foodborne pathogen, Listeria monocytogenes, (Lm), frequently undergoes selection pressure associated with the extensive use of disinfectants, such as quaternary ammonium compounds, which are widely used in food processing plants. The repeated exposure to sub-inhibitory biocide concentrations can induce increased tolerance to these compounds, but can also trigger the development of antibiotic resistance, and both increase the risk of food contamination and persistence in food production environments. Although the acquisition of genes can explain biocide tolerance, the genetic mechanisms underlying the adaptive cross-resistance to antibiotics remain unclear. We previously showed that repeated exposure to benzalkonium chloride (BC) and didecyldimethyl ammonium chloride (DDAC) led to reduced susceptibility to ciprofloxacin in Lm strains from diverse sources. Here, we compared the genomes of 16 biocide-adapted and 10 parental strains to identify the molecular mechanisms of fluoroquinolone cross-resistance. A core genome SNP analysis identified various mutations in the transcriptional regulator fepR (lmo2088) for 94% of the adapted strains and mutations in other effectors at a lower frequency. FepR is a local repressor of the MATE fluoroquinolone efflux pump FepA. The impact of the mutations on the structure and function of the protein was assessed by performing in silico prediction and protein homology modeling. Our results show that 75% of the missense mutations observed in fepR are located in the HTH domain of the protein, within the DNA interaction site. These mutations are predicted to reduce the activity of the regulator, leading to the overexpression of the efflux pump responsible for the ciprofloxacin-enhanced resistance.

5.
Front Microbiol ; 13: 917588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770178

RESUMO

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes the serious foodborne illness listeriosis. Although soil is a primary reservoir and a central habitat for Lm, little information is available on the genetic features underlying the fitness of Lm strains in this complex habitat. The aim of this study was to identify (i) correlations between the strains fitness in soil, their origin and their phylogenetic position (ii) identify genetic markers allowing Lm to survive in the soil. To this end, we assembled a balanced panel of 216 Lm strains isolated from three major ecological compartments (outdoor environment, animal hosts, and food) and from 33 clonal complexes occurring worldwide. The ability of the 216 strains to survive in soil was tested phenotypically. Hierarchical clustering identified three phenotypic groups according to the survival rate (SR): phenotype 1 "poor survivors" (SR < 2%), phenotype 2 "moderate survivors" (2% < SR < 5%) and phenotype 3 "good survivors" (SR > 5%). Survival in soil depended neither on strains' origin nor on their phylogenetic position. Genome-wide-association studies demonstrated that a greater number of genes specifically associated with a good survival in soil was found in lineage II strains (57 genes) than in lineage I strains (28 genes). Soil fitness was mainly associated with variations in genes (i) coding membrane proteins, transcription regulators, and stress resistance genes in both lineages (ii) coding proteins related to motility and (iii) of the category "phage-related genes." The cumulative effect of these small genomic variations resulted in significant increase of soil fitness.

6.
Food Microbiol ; 106: 103757, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690455

RESUMO

In response to the massive use of biocides for controlling Listeria monocytogenes (hereafter Lm) contaminations along the food chain, strains showing biocide tolerance emerged. Here, accessory genomic elements were associated with biocide tolerance through pangenome-wide associations performed on 197 Lm strains from different lineages, ecological, geographical and temporal origins. Mobile elements, including prophage-related loci, the Tn6188_qacH transposon and pLMST6_emrC plasmid, were widespread across lineage I and II food strains and associated with tolerance to benzalkonium-chloride (BC), a quaternary ammonium compound (QAC) widely used in food processing. The pLMST6_emrC was also associated with tolerance to another QAC, the didecyldimethylammonium-chloride, displaying a pleiotropic effect. While no associations were detected for chemically reactive biocides (alcohols and chlorines), genes encoding for cell-surface proteins were associated with BC or polymeric biguanide tolerance. The latter was restricted to lineage I strains from animal and the environment. In conclusion, different genetic markers, with polygenic nature or not, appear to have driven the Lm adaptation to biocide, especially in food strains but also from animal and the environment. These markers could aid to monitor and predict the spread of biocide tolerant Lm genotypes across different ecological niches, finally reducing the risk of such strains in food industrial settings.


Assuntos
Desinfetantes , Listeria monocytogenes , Animais , Compostos de Benzalcônio/farmacologia , Cloretos , Desinfetantes/farmacologia , Farmacorresistência Bacteriana/genética , Ecossistema , Genômica
7.
Sci Data ; 9(1): 190, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484273

RESUMO

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.


Assuntos
Doenças Transmitidas por Alimentos , Listeria monocytogenes , Listeriose , Animais , Ecossistema , Doenças Transmitidas por Alimentos/microbiologia , Listeria monocytogenes/genética , Listeriose/epidemiologia , Listeriose/microbiologia
8.
Front Microbiol ; 12: 750065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803971

RESUMO

From May 2015 to March 2016, a severe outbreak due to Listeria monocytogenes ST7 strain occurred in Central Italy and caused 24 confirmed clinical cases. The epidemic strain was deeply investigated using whole-genome sequencing (WGS) analysis. In the interested area, the foodborne outbreak investigation identified a meat food-producing plant contaminated by the outbreak strain, carried by pork-ready-to-eat products. In the same region, in March 2018, the epidemic strain reemerged causing one listeriosis case in a 10-month-old child. The aim of this study was to investigate the phylogeny of the epidemic and reemergent strains over time and to compare them with a closer ST7 clone, detected during the outbreak and with different pulsed-field gel electrophoresis (PFGE) profiles, in order to identify genomic features linked to the persistence and the reemergence of the outbreak. An approach combining phylogenetic analysis and genome-wide association study (GWAS) revealed that the epidemic and reemergent clones were genetically closer to the ST7 clone with different PFGE profiles and strictly associated with the pork production chain. The repeated detection of both clones was probably correlated with (i) the presence of truly persistent clones and the repeated introduction of new ones and (ii) the contribution of prophage genes in promoting the persistence of the epidemic clones. Despite that no significant genomic differences were detected between the outbreak and the reemergent strain, the two related clones detected during the outbreak can be differentiated by transcriptional factor and phage genes associated with the phage LP-114.

9.
Front Microbiol ; 12: 729050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795648

RESUMO

Over the past 11 years, the Slovak National Reference Laboratory has collected a panel of 988 Listeria monocytogenes isolates in Slovakia, which were isolated from various food sectors (61%), food-processing environments (13.7%), animals with listeriosis symptoms (21.2%), and human cases (4.1%). We serotyped these isolates by agglutination method, which revealed the highest prevalence (61.1%) of serotype 1/2a and the lowest (4.7%) of serotype 1/2c, although these represented the majority of isolates from the meat sector. The distribution of CCs analyzed on 176 isolates demonstrated that CC11-ST451 (15.3%) was the most prevalent CC, particularly in food (14.8%) and animal isolates (17.5%). CC11-ST451, followed by CC7, CC14, and CC37, were the most prevalent CCs in the milk sector, and CC9 and CC8 in the meat sector. CC11-ST451 is probably widely distributed in Slovakia, mainly in the milk and dairy product sectors, posing a possible threat to public health. Potential persistence indication of CC9 was observed in one meat facility between 2014 and 2018, highlighting its general meat-related distribution and potential for persistence worldwide.

10.
Vet Sci ; 8(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34564589

RESUMO

Listeria monocytogenes can cause disease in humans and in a wide range of animal species, especially in farm ruminants. The aim of the study was to determine the prevalence and genetic diversity of L. monocytogenes related to 1185 cattle abortion cases in Latvia during 2013-2018. The prevalence of L. monocytogenes among cattle abortions was 16.1% (191/1185). The seasonality of L. monocytogenes abortions was observed with significantly higher occurrence (p < 0.01) in spring (March-May). In 61.0% of the cases, the affected cattle were under four years of age. L. monocytogenes abortions were observed during the third (64.6%) and second (33.3%) trimesters of gestation. Overall, 27 different sequence types (ST) were detected, and four of them, ST29 (clonal complex, CC29), ST37 (CC37), ST451 (CC11) and ST7 (CC7), covered more than half of the L. monocytogenes isolates. Key virulence factors like the prfA-dependent virulence cluster and inlA, inlB were observed in all the analyzed isolates, but lntA, inlF, inlJ, vip were associated with individual sequence types. Our results confirmed that L. monocytogenes is the most important causative agent of cattle abortions in Latvia and more than 20 different STs were observed in L. monocytogenes abortions in cattle.

11.
Pathogens ; 10(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670643

RESUMO

In this contribution, the antimicrobial susceptibility toward 11 antibiotics and four biocides of a panel of 205 Listeria monocytogenes (Lm) strains isolated from different ecological niches (i.e., food, animals and natural environment) was evaluated. The impact of exposure to biocides on the antibiotic susceptibilities of Lm was also investigated. Lm strains isolated from food exhibited overall a lower susceptibility (higher minimal inhibitory concentrations, MIC) for ammonium quaternary compounds (QACs) and peracetic acid (PAC) than strains isolated from animals and natural environments. Conversely, the ecological origins of Lm strains did not significantly affect their susceptibilities towards antibiotics. Interestingly, repeated exposure to QACs recurrently led to a decrease in susceptibility toward ciprofloxacin (CIP), a fluoroquinolone antibiotic, largely used in human medicine. Moreover, these lower levels of susceptibility to CIP remained stable in most Lm strains even after subcultures without biocide selection pressure, suggesting an adaptation involving modifications at the genetic level. Results underlined the ability of Lm to adapt to biocides, especially QACs, and the potential link between this adaptation and the selection of resistance toward critical antibiotics such as ciprofloxacin. These data support a potential role of the extensive use of QACs from "farm to fork" in the selection of biocide and antibiotic resistance in pathogenic bacteria such as Lm.

12.
Pathogens ; 9(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998344

RESUMO

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes the foodborne illness, listeriosis. Clonal complexes (CC), such as CC121, are overrepresented in the food production industry, and are rarely reported in animals and the environment. Working within a European-wide project, we investigated the routes by which strains are transmitted from environments and animals to food and the food production environment (FPE). In this context, we report, for the first time, the occurrence of a ST121 (CC121) strain isolated from a dolphin brain. The genome was compared with the genomes of 376 CC121 strains. Genomic comparisons showed that 16 strains isolated from food were the closest to the dolphin strain. Like most of the food strains analyzed here, the dolphin strain included genomic features (transposon Tn6188, plasmid pLM6179), both described as being associated with the strain's adaptation to the FPE. Like all 376 strains, the dolphin strain contained a truncated actA gene and inlA gene, both described as being associated with attenuated virulence. Despite this fact, the strain was able to cross blood-brain barrier in immunosuppressed dolphin exposed polychlorinated biphenyl and invaded by parasites. Our data suggest that the dolphin was infected by a food-related strain released into the Mediterranean Sea.

13.
Microb Genom ; 5(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30775964

RESUMO

We present the LiSEQ (Listeria SEQuencing) project, funded by the European Food Safety Agency (EFSA) to compare Listeria monocytogenes isolates collected in the European Union from ready-to-eat foods, compartments along the food chain (e.g. food-producing animals, food-processing environments) and humans. In this article, we report the molecular characterization of a selection of this data set employing whole-genome sequencing analysis. We present an overview of the strain diversity observed in different sampled sources, and characterize the isolates based on their virulence and resistance profile. We integrate into our analysis the global L. monocytogenes genome collection described by Moura and colleagues in 2016 to assess the representativeness of the LiSEQ collection in the context of known L. monocytogenes strain diversity.


Assuntos
Laticínios/microbiologia , Produtos Pesqueiros/microbiologia , Listeria monocytogenes/classificação , Listeriose/microbiologia , Produtos da Carne/microbiologia , Animais , Estudos Transversais , Farmacorresistência Bacteriana/genética , Europa (Continente) , Manipulação de Alimentos , Microbiologia de Alimentos , Variação Genética , Humanos , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Virulência/genética , Sequenciamento Completo do Genoma
14.
Front Microbiol ; 9: 684, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681897

RESUMO

Listeria monocytogenes is an ubiquitous pathogenic bacterium, transmissible to humans through the consumption of contaminated food. The pork production sector has been hit hard by a series of L. monocytogenes-related food poisoning outbreaks in France. An overview of the diversity of strains circulating at all levels of the pork production chain, from pig farming (PF) to finished food products (FFP), is needed to identify the contamination routes and improve food safety. Until now, no typing data has been available on strains isolated across the entire pig and pork production chain. Here, we analyzed the population genetic structure of 687 L. monocytogenes strains isolated over the last 20 years in virtually all the French départements from three compartments of this production sector: PF, the food processing environment (FPE), and FFP. The genetic structure was described based on Multilocus sequence typing (MLST) clonal complexes (CCs). The CCs were obtained by mapping the PFGE profiles of the strains. The distribution of CCs was compared firstly between the three compartments and then with CCs obtained from 1106 strains isolated from other food production sectors in France. The predominant CCs of pig and pork strains were not equally distributed among the three compartments: the CC37, CC59, and CC77 strains, rarely found in FPE and FFP, were prevalent in PF. The two most prevalent CCs in the FPE and FFP compartments, CC9 and CC121, were rarely or never detected in PF. No CC was exclusively associated with the pork sector. Three CCs (CC5, CC6, and CC2) were considered ubiquitous, because they were observed in comparable proportions in all food production sectors. The two most prevalent CCs in all sectors were CC9 and CC121, but their distribution was disparate. CC9 was associated with meat products and food products combining several food categories, whereas CC121 was not associated with any given sector. Based on these results, CC121 is likely able to colonize a larger diversity of food products than CC9. Both CCs being associated with the food production suggests, that certain processing steps, such as slaughtering or stabilization treatments, favor their settlement and the recontamination of the food produced.

15.
Front Microbiol ; 8: 2351, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238330

RESUMO

Background/objectives: Whole genome sequencing (WGS) has proven to be a powerful subtyping tool for foodborne pathogenic bacteria like L. monocytogenes. The interests of genome-scale analysis for national surveillance, outbreak detection or source tracking has been largely documented. The genomic data however can be exploited with many different bioinformatics methods like single nucleotide polymorphism (SNP), core-genome multi locus sequence typing (cgMLST), whole-genome multi locus sequence typing (wgMLST) or multi locus predicted protein sequence typing (MLPPST) on either core-genome (cgMLPPST) or pan-genome (wgMLPPST). Currently, there are little comparisons studies of these different analytical approaches. Our objective was to assess and compare different genomic methods that can be implemented in order to cluster isolates of L. monocytogenes. Methods: The clustering methods were evaluated on a collection of 207 L. monocytogenes genomes of food origin representative of the genetic diversity of the Anses collection. The trees were then compared using robust statistical analyses. Results: The backward comparability between conventional typing methods and genomic methods revealed a near-perfect concordance. The importance of selecting a proper reference when calling SNPs was highlighted, although distances between strains remained identical. The analysis also revealed that the topology of the phylogenetic trees between wgMLST and cgMLST were remarkably similar. The comparison between SNP and cgMLST or SNP and wgMLST approaches showed that the topologies of phylogenic trees were statistically similar with an almost equivalent clustering. Conclusion: Our study revealed high concordance between wgMLST, cgMLST, and SNP approaches which are all suitable for typing of L. monocytogenes. The comparable clustering is an important observation considering that the two approaches have been variously implemented among reference laboratories.

18.
Appl Environ Microbiol ; 82(18): 5720-8, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27235443

RESUMO

UNLABELLED: Listeria monocytogenes is a ubiquitous bacterium that may cause the foodborne illness listeriosis. Only a small amount of data about the population genetic structure of strains isolated from food is available. This study aimed to provide an accurate view of the L. monocytogenes food strain population in France. From 1999 to 2014, 1,894 L. monocytogenes strains were isolated from food at the French National Reference Laboratory for L. monocytogenes and classified according to the five risk food matrices defined by the European Food Safety Authority (EFSA). A total of 396 strains were selected on the basis of different pulsed-field gel electrophoresis (PFGE) clusters, serotypes, and strain origins and typed by multilocus sequence typing (MLST), and the MLST results were supplemented with MLST data available from Institut Pasteur, representing human and additional food strains from France. The distribution of sequence types (STs) was compared between food and clinical strains on a panel of 675 strains. High congruence between PFGE and MLST was found. Out of 73 PFGE clusters, the two most prevalent corresponded to ST9 and ST121. Using original statistical analysis, we demonstrated that (i) there was not a clear association between ST9 and ST121 and the food matrices, (ii) serotype IIc, ST8, and ST4 were associated with meat products, and (iii) ST13 was associated with dairy products. Of the two major STs, ST121 was the ST that included the fewest clinical strains, which might indicate lower virulence. This observation may be directly relevant for refining risk analysis models for the better management of food safety. IMPORTANCE: This study showed a very useful backward compatibility between PFGE and MLST for surveillance. The results enabled better understanding of the population structure of L. monocytogenes strains isolated from food and management of the health risks associated with L. monocytogenes food strains. Moreover, this work provided an accurate view of L. monocytogenes strain populations associated with specific food matrices. We clearly showed that some STs were associated with food matrices, such as meat, meat products, and dairy products. We opened the way to source attribution modeling in order to quantify the relative importance of the main food matrices.


Assuntos
Eletroforese em Gel de Campo Pulsado , Microbiologia de Alimentos , Variação Genética , Genética Populacional , Listeria monocytogenes/classificação , Listeria monocytogenes/genética , Tipagem de Sequências Multilocus , Análise por Conglomerados , França , Humanos , Listeria monocytogenes/isolamento & purificação , Listeriose/microbiologia , Sorotipagem
19.
Nat Genet ; 48(3): 308-313, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26829754

RESUMO

Microbial pathogenesis studies are typically performed with reference strains, thereby overlooking within-species heterogeneity in microbial virulence. Here we integrated human epidemiological and clinical data with bacterial population genomics to harness the biodiversity of the model foodborne pathogen Listeria monocytogenes and decipher the basis of its neural and placental tropisms. Taking advantage of the clonal structure of this bacterial species, we identify clones epidemiologically associated either with food or with human central nervous system (CNS) or maternal-neonatal (MN) listeriosis. The latter clones are also most prevalent in patients without immunosuppressive comorbidities. Strikingly, CNS- and MN-associated clones are hypervirulent in a humanized mouse model of listeriosis. By integrating epidemiological data and comparative genomics, we have uncovered multiple new putative virulence factors and demonstrate experimentally the contribution of the first gene cluster mediating L. monocytogenes neural and placental tropisms. This study illustrates the exceptional power in harnessing microbial biodiversity to identify clinically relevant microbial virulence attributes.


Assuntos
Biodiversidade , Genômica , Listeria monocytogenes/genética , Listeriose/genética , Animais , Sistema Nervoso Central/microbiologia , Sistema Nervoso Central/patologia , Humanos , Listeria monocytogenes/patogenicidade , Listeriose/epidemiologia , Listeriose/microbiologia , Camundongos , Filogenia
20.
Front Microbiol ; 6: 882, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441849

RESUMO

Staphylococcal food poisoning outbreaks (SFPOs) are frequently reported in France. However, most of them remain unconfirmed, highlighting a need for a better characterization of isolated strains. Here we analyzed the genetic diversity of 112 Staphylococcus aureus strains isolated from 76 distinct SFPOs that occurred in France over the last 30 years. We used a recently developed multiple-locus variable-number tandem-repeat analysis (MLVA) protocol and compared this method with pulsed field gel electrophoresis (PFGE), spa-typing and carriage of genes (se genes) coding for 11 staphylococcal enterotoxins (i.e., SEA, SEB, SEC, SED, SEE, SEG, SEH, SEI, SEJ, SEP, SER). The strains known to have an epidemiological association with one another had identical MLVA types, PFGE profiles, spa-types or se gene carriage. MLVA, PFGE and spa-typing divided 103 epidemiologically unrelated strains into 84, 80, and 50 types respectively demonstrating the high genetic diversity of S. aureus strains involved in SFPOs. Each MLVA type shared by more than one strain corresponded to a single spa-type except for one MLVA type represented by four strains that showed two different-but closely related-spa-types. The 87 enterotoxigenic strains were distributed across 68 distinct MLVA types that correlated all with se gene carriage except for four MLVA types. The most frequent se gene detected was sea, followed by seg and sei and the most frequently associated se genes were sea-seh and sea-sed-sej-ser. The discriminatory ability of MLVA was similar to that of PFGE and higher than that of spa-typing. This MLVA protocol was found to be compatible with high throughput analysis, and was also faster and less labor-intensive than PFGE. MLVA holds promise as a suitable method for investigating SFPOs and tracking the source of contamination in food processing facilities in real time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...