Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2402052121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551843

RESUMO

The strange metal phase of correlated electrons materials was described in a recent theory by a model of a Fermi surface coupled a two-dimensional quantum critical bosonic field with a spatially random Yukawa coupling. With the assumption of self-averaging randomness, similar to that in the Sachdev-Ye-Kitaev model, numerous observed properties of a strange metal were obtained for a wide range of intermediate temperatures, including the linear in temperature resistivity. The Harris criterion implies that spatial fluctuations in the local position of the critical point must dominate at lower temperatures. For an [Formula: see text]-component boson with [Formula: see text], we use multiple graphics processing units (GPUs) to compute the real frequency spectrum of the boson propagator in a self-consistent mean-field treatment of the boson self-interactions, but an exact treatment of multiple realizations of the spatial randomness from the random boson mass. We find that Landau damping from the fermions leads to the emergence of the physics of the random transverse-field Ising model at low temperatures, as has been proposed by Hoyos, Kotabage, and Vojta. This regime is controlled by localized overdamped eigenmodes of the bosonic scalar field, also has a resistivity which is nearly linear-in-temperature, and extends into a "quantum critical phase" away from the quantum critical point, as observed in several cuprates. For the [Formula: see text] Ising scalar, the mean-field treatment is not applicable, and so we use Hybrid Monte Carlo simulations running on multiple GPUs; we find a rounded transition and localization physics, with strange metal behavior in an extended region around the transition.

2.
Phys Rev Lett ; 131(23): 236601, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134771

RESUMO

Relating the quantized Hall response of correlated insulators to many-body topological invariants is a key challenge in topological quantum matter. Here, we use Streda's formula to derive an expression for the many-body Chern number in terms of the single-particle interacting Green's function and its derivative with respect to a magnetic field. In this approach, we find that this many-body topological invariant can be decomposed in terms of two contributions, N_{3}[G]+ΔN_{3}[G], where N_{3}[G] is known as the Ishikawa-Matsuyama invariant and where the second term involves derivatives of Green's function and the self-energy with respect to the magnetic perturbation. As a by-product, the invariant N_{3}[G] is shown to stem from the derivative of Luttinger's theorem with respect to the probe magnetic field. These results reveal under which conditions the quantized Hall conductivity of correlated topological insulators is solely dictated by the invariant N_{3}[G], providing new insight on the origin of fractionalization in strongly correlated topological phases.

3.
Nat Commun ; 14(1): 7134, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932262

RESUMO

The superconducting state and mechanism are among the least understood phenomena in twisted graphene systems. Recent tunneling experiments indicate a transition between nodal and gapped pairing with electron filling, which is not naturally understood within current theory. We demonstrate that the coexistence of superconductivity and flavor polarization leads to pairing channels that are guaranteed by symmetry to be entirely band-off-diagonal, with a variety of consequences: most notably, the pairing invariant under all symmetries can have Bogoliubov Fermi surfaces in the superconducting state with protected nodal lines, or may be fully gapped, depending on parameters, and the band-off-diagonal chiral p-wave state exhibits transitions between gapped and nodal regions upon varying the doping. We demonstrate that band-off-diagonal pairing can be the leading state when only phonons are considered, and is also uniquely favored by fluctuations of a time-reversal-symmetric intervalley coherent order motivated by recent experiments. Consequently, band-off-diagonal superconductivity allows for the reconciliation of several key experimental observations in graphene moiré systems.

4.
Phys Rev Lett ; 131(14): 141601, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862633

RESUMO

Using holographic duality, we present an analytically controlled theory of quantum critical points without quasiparticles, at finite disorder and finite charge density. These fixed points are obtained by perturbing a disorder-free quantum critical point with relevant disorder whose operator dimension is perturbatively close to Harris marginal. We analyze these fixed points both using field theoretic arguments, and by solving the bulk equations of motion in holography. We calculate the critical exponents of the IR theory, together with thermoelectric transport coefficients. Our predictions for the critical exponents of the disordered fixed point are consistent with previous work, both in holographic and nonholograpic models.

5.
Phys Rev Lett ; 131(3): 036503, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540864

RESUMO

We model interactions following the Sachdev-Ye-Kitaev (SYK) framework in disordered graphene flakes up to 300 000 atoms in size (∼100 nm in diameter) subjected to an out-of-plane magnetic field B of 5-20 Tesla within the tight-binding formalism. We investigate two sources of disorder: (i) irregularities at the system boundaries, and (ii) bulk vacancies-for a combination of which we find conditions that could be favorable for the formation of the phase with Sachdev-Ye-Kitaev features under realistic experimental conditions above the liquid helium temperature.

6.
Science ; 381(6659): 790-793, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590350

RESUMO

Strange metals-ubiquitous in correlated quantum materials-transport electrical charge at low temperatures but not by the individual electronic quasiparticle excitations, which carry charge in ordinary metals. In this work, we consider two-dimensional metals of fermions coupled to quantum critical scalars, the latter representing order parameters or fractionalized particles. We show that at low temperatures (T), such metals generically exhibit strange metal behavior with a T-linear resistivity arising from spatially random fluctuations in the fermion-scalar Yukawa couplings about a nonzero spatial average. We also find a T ln(1/T) specific heat and a rationale for the Planckian bound on the transport scattering time. These results are in agreement with observations and are obtained in the large N expansion of an ensemble of critical metals with N fermion flavors.

7.
Phys Rev Lett ; 130(20): 206501, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267547

RESUMO

We present large-scale quantum Monte Carlo simulation results on a realistic Hamiltonian of kagome-lattice Rydberg atom arrays. Although the system has no intrinsic disorder, intriguingly, our analyses of static and dynamic properties on large system sizes reveal emergent glassy behavior in a region of parameter space located between two valence bond solid phases. The extent of this glassy region is demarcated using the Edwards-Anderson order parameter, and its phase transitions to the two proximate valence bond solids-as well as the crossover towards a trivial paramagnetic phase-are identified. We demonstrate the intrinsically slow (imaginary) time dynamics deep inside the glassy phase and discuss experimental considerations for detecting such a quantum disordered phase with numerous nearly degenerate local minima. Our proposal paves a new route to the study of real-time glassy phenomena and highlights the potential for quantum simulation of a distinct phase of quantum matter beyond solids and liquids in current-generation Rydberg platforms.

8.
Proc Natl Acad Sci U S A ; 120(21): e2302701120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192166

RESUMO

We describe the confining instabilities of a proposed quantum spin liquid underlying the pseudogap metal state of the hole-doped cuprates. The spin liquid can be described by a SU(2) gauge theory of Nf = 2 massless Dirac fermions carrying fundamental gauge charges-this is the low-energy theory of a mean-field state of fermionic spinons moving on the square lattice with π-flux per plaquette in the ℤ2 center of SU(2). This theory has an emergent SO(5)f global symmetry and is presumed to confine at low energies to the Néel state. At nonzero doping (or smaller Hubbard repulsion U at half-filling), we argue that confinement occurs via the Higgs condensation of bosonic chargons carrying fundamental SU(2) gauge charges also moving in π ℤ2-flux. At half-filling, the low-energy theory of the Higgs sector has Nb = 2 relativistic bosons with a possible emergent SO(5)b global symmetry describing rotations between a d-wave superconductor, period-2 charge stripes, and the time-reversal breaking "d-density wave" state. We propose a conformal SU(2) gauge theory with Nf = 2 fundamental fermions, Nb = 2 fundamental bosons, and a SO(5)f×SO(5)b global symmetry, which describes a deconfined quantum critical point between a confining state which breaks SO(5)f and a confining state which breaks SO(5)b. The pattern of symmetry breaking within both SO(5)s is determined by terms likely irrelevant at the critical point, which can be chosen to obtain a transition between Néel order and d-wave superconductivity. A similar theory applies at nonzero doping and large U, with longer-range couplings of the chargons leading to charge order with longer periods.

9.
Phys Rev Lett ; 130(4): 043601, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763444

RESUMO

Strongly interacting arrays of Rydberg atoms provide versatile platforms for exploring exotic many-body phases and dynamics of correlated quantum systems. Motivated by recent experimental advances, we show that the combination of Rydberg interactions and appropriate lattice geometries naturally leads to emergent Z_{2} gauge theories endowed with matter fields. Based on this mapping, we describe how Rydberg platforms could realize two distinct classes of topological Z_{2} quantum spin liquids, which differ in their patterns of translational symmetry fractionalization. We also discuss the natures of the fractionalized excitations of these Z_{2} spin liquid states using both fermionic and bosonic parton theories and illustrate their rich interplay with proximate solid phases.

10.
Proc Natl Acad Sci U S A ; 119(46): e2215141119, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36367907

RESUMO

We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon-defect coupling is proportional to the phonon lifetime and has a "side-jump" interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin-orbit interaction.

11.
Nat Commun ; 13(1): 5799, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184678

RESUMO

Quantum dimer models are known to host topological quantum spin liquid phases, and it has recently become possible to simulate such models with Rydberg atoms trapped in arrays of optical tweezers. Here, we present large-scale quantum Monte Carlo simulation results on an extension of the triangular lattice quantum dimer model with terms in the Hamiltonian annihilating and creating single dimers. We find distinct odd and even [Formula: see text] spin liquids, along with several phases with no topological order: a staggered crystal, a nematic phase, and a trivial symmetric phase with no obvious broken symmetry. We also present dynamic spectra of the phases, and note implications for experiments on Rydberg atoms.

12.
Phys Rev Lett ; 129(6): 060601, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36018643

RESUMO

We investigate the many-body quantum chaos of non-Fermi liquid states with Fermi surfaces in two spatial dimensions by computing their out-of-time-order correlation functions. Using a recently proposed large N theory for the critical Fermi surface, and the ladder identity of Gu and Kitaev, we show that the chaos Lyapunov exponent takes the maximal value of 2πk_{B}T/ℏ, where T is the absolute temperature. We also examine a phenomenological model that can be continuously tuned between a non-Fermi liquid without quasiparticles and a Fermi liquid with quasiparticles. We find that the Lyapunov exponent becomes smaller than the maximal value precisely when quasiparticles are restored.

13.
Proc Natl Acad Sci U S A ; 119(29): e2206921119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858308

RESUMO

We investigate a model of electrons with random and all-to-all hopping and spin exchange interactions, with a constraint of no double occupancy. The model is studied in a Sachdev-Ye-Kitaev-like large-M limit with SU(M) spin symmetry. The saddle-point equations of this model are similar to approximate dynamic mean-field equations of realistic, nonrandom, t-J models. We use numerical studies on both real and imaginary frequency axes, along with asymptotic analyses, to establish the existence of a critical non-Fermi-liquid metallic ground state at large doping, with the spin correlation exponent varying with doping. This critical solution possesses a time-reparameterization symmetry, akin to Sachdev-Ye-Kitaev (SYK) models, which contributes a linear-in-temperature resistivity over the full range of doping where the solution is present. It is therefore an attractive mean-field description of the overdoped region of cuprates, where experiments have observed a linear-T resistivity in a broad region. The critical metal also displays a strong particle-hole asymmetry, which is relevant to Seebeck coefficient measurements. We show that the critical metal has an instability to a low-doping spin-glass phase and compute a critical doping value. We also describe the properties of this metallic spin-glass phase.

14.
Science ; 376(6589): 193-199, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389784

RESUMO

Magic-angle twisted trilayer graphene (TTG) has recently emerged as a platform to engineer strongly correlated flat bands. We reveal the normal-state structural and electronic properties of TTG using low-temperature scanning tunneling microscopy at twist angles for which superconductivity has been observed. Real trilayer samples undergo a strong reconstruction of the moiré lattice, which locks layers into near-magic-angle, mirror symmetric domains comparable in size with the superconducting coherence length. This relaxation introduces an array of localized twist-angle faults, termed twistons and moiré solitons, whose electronic structure deviates strongly from the background regions, leading to a doping-dependent, spatially granular electronic landscape. The Fermi-level density of states is maximally uniform at dopings for which superconductivity has been observed in transport measurements.

15.
Nature ; 595(7866): 227-232, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234334

RESUMO

Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing1, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide insights into strongly correlated quantum matter2-6, while at the same time enabling new methods for computation7-10 and metrology11. Here we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled by coherent atomic excitation into Rydberg states12. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by characterizing high-fidelity antiferromagnetically ordered states and demonstrating quantum critical dynamics consistent with an Ising quantum phase transition in (2 + 1) dimensions13. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation14, experimentally map the phase diagram and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics and hardware-efficient realization of quantum algorithms.

16.
Phys Rev Lett ; 126(13): 136602, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861117

RESUMO

We present exact diagonalization results on finite clusters of a t-J model of spin-1/2 electrons with random all-to-all hopping and exchange interactions. We argue that such random models capture qualitatively the strong local correlations needed to describe the cuprates and related compounds, while avoiding lattice space group symmetry breaking orders. The previously known spin glass ordered phase in the insulator at doping p=0 extends to a metallic spin glass phase up to a transition p=p_{c}≈1/3. The dynamic spin susceptibility shows signatures of the spectrum of the Sachdev-Ye-Kitaev models near p_{c}. We also find signs of the phase transition in the entropy, entanglement entropy, and compressibility, all of which exhibit a maximum near p_{c}. The electron energy distribution function in the metallic phase is consistent with a disordered extension of the Luttinger-volume Fermi surface for p>p_{c}, while this breaks down for p

17.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468679

RESUMO

We analyze the zero-temperature phases of an array of neutral atoms on the kagome lattice, interacting via laser excitation to atomic Rydberg states. Density-matrix renormalization group calculations reveal the presence of a wide variety of complex solid phases with broken lattice symmetries. In addition, we identify a regime with dense Rydberg excitations that has a large entanglement entropy and no local order parameter associated with lattice symmetries. From a mapping to the triangular lattice quantum dimer model, and theories of quantum phase transitions out of the proximate solid phases, we argue that this regime could contain one or more phases with topological order. Our results provide the foundation for theoretical and experimental explorations of crystalline and liquid states using programmable quantum simulators based on Rydberg atom arrays.

18.
Proc Natl Acad Sci U S A ; 117(47): 29543-29554, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168719

RESUMO

Recent experiments on twisted bilayer graphene have shown a high-temperature parent state with massless Dirac fermions and broken electronic flavor symmetry; superconductivity and correlated insulators emerge from this parent state at lower temperatures. We propose that the superconducting and correlated insulating orders are connected by Wess-Zumino-Witten terms, so that defects of one order contain quanta of another order and skyrmion fluctuations of the correlated insulator are a "mechanism" for superconductivity. We present a comprehensive listing of plausible low-temperature orders and the parent flavor symmetry-breaking orders. The previously characterized topological nature of the band structure of twisted bilayer graphene plays an important role in this analysis.

19.
Phys Rev E ; 101(4-1): 042136, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422719

RESUMO

We compute the spectral form factor of two integrable quantum-critical many-body systems in one spatial dimension. The spectral form factor of the quantum Ising chain is periodic in time in the scaling limit described by a conformal field theory; we also compute corrections from lattice effects and deviation from criticality. Criticality in the random Ising chain is described by rare regions associated with a strong randomness fixed point, and these control the long-time limit of the spectral form factor.

20.
Phys Rev Lett ; 124(10): 103601, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216437

RESUMO

We describe the zero-temperature phase diagram of a model of a two-dimensional square-lattice array of neutral atoms, excited into Rydberg states and interacting via strong van der Waals interactions. Using the density-matrix renormalization group algorithm, we map out the phase diagram and obtain a rich variety of phases featuring complex density wave orderings, upon varying lattice spacing and laser detuning. While some of these phases result from the classical optimization of the van der Waals energy, we also find intrinsically quantum-ordered phases stabilized by quantum fluctuations. These phases are surrounded by novel quantum phase transitions, which we analyze by finite-size scaling numerics and Landau theories. Our work highlights Rydberg quantum simulators in higher dimensions as promising platforms to realize exotic many-body phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...