Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(8): 13317-13327, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157471

RESUMO

We report the electro-optic sampling (EOS) response and the terahertz (THz) optical rectification (OR) of the z-cut α-quartz. Due to its small effective second-order nonlinearity, large transparency window and hardness, freestanding thin quartz plates can faithfully measure the waveform of intense THz pulses with MV/cm electric-field strength. We show that both its OR and EOS responses are broad with extension up to ∼8 THz. Strikingly, the latter responses are independent of the crystal thickness, a plausible indication of dominant surface contribution to the total second-order nonlinear susceptibility of quartz at THz frequencies. Our study introduces the crystalline quartz as a reliable THz electro-optic medium for high field THz detection, and characterize its emission as a common substrate.

2.
Nat Chem ; 14(9): 1031-1037, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35773490

RESUMO

The solvation of ions changes the physical, chemical and thermodynamic properties of water, and the microscopic origin of this behaviour is believed to be ion-induced perturbation of water's hydrogen-bonding network. Here we provide microscopic insights into this process by monitoring the dissipation of energy in salt solutions using time-resolved terahertz-Raman spectroscopy. We resonantly drive the low-frequency rotational dynamics of water molecules using intense terahertz pulses and probe the Raman response of their intermolecular translational motions. We find that the intermolecular rotational-to-translational energy transfer is enhanced by highly charged cations and is drastically reduced by highly charged anions, scaling with the ion surface charge density and ion concentration. Our molecular dynamics simulations reveal that the water-water hydrogen-bond strength between the first and second solvation shells of cations increases, while it decreases around anions. The opposite effects of cations and anions on the intermolecular interactions of water resemble the effects of ions on the stabilization and denaturation of proteins.


Assuntos
Análise Espectral Raman , Água , Ânions , Cátions , Hidrogênio
3.
Sci Rep ; 10(1): 18329, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110105

RESUMO

We resolve the real-time coherent rotational motion of isolated water molecules encapsulated in fullerene-C60 cages by time-domain terahertz (THz) spectroscopy. We employ single-cycle THz pulses to excite the low-frequency rotational motion of water and measure the subsequent coherent emission of electromagnetic waves by water molecules. At temperatures below ~ 100 K, C60 lattice vibrational damping is mitigated and the quantum dynamics of confined water are resolved with a markedly long rotational coherence, extended beyond 10 ps. The observed rotational transitions agree well with low-frequency rotational dynamics of single water molecules in the gas phase. However, some additional spectral features with their major contribution at ~2.26 THz are also observed which may indicate interaction between water rotation and the C60 lattice phonons. We also resolve the real-time change of the emission pattern of water after a sudden cooling to 4 K, signifying the conversion of ortho-water to para-water over the course of 10s hours. The observed long coherent rotational dynamics of isolated water molecules confined in C60 makes this system an attractive candidate for future quantum technology.

4.
Sci Adv ; 6(17): eaay7074, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32494631

RESUMO

Energy dissipation in water is very fast and more efficient than in many other liquids. This behavior is commonly attributed to the intermolecular interactions associated with hydrogen bonding. Here, we investigate the dynamic energy flow in the hydrogen bond network of liquid water by a pump-probe experiment. We resonantly excite intermolecular degrees of freedom with ultrashort single-cycle terahertz pulses and monitor its Raman response. By using ultrathin sample cell windows, a background-free bipolar signal whose tail relaxes monoexponentially is obtained. The relaxation is attributed to the molecular translational motions, using complementary experiments, force field, and ab initio molecular dynamics simulations. They reveal an initial coupling of the terahertz electric field to the molecular rotational degrees of freedom whose energy is rapidly transferred, within the excitation pulse duration, to the restricted translational motion of neighboring molecules. This rapid energy transfer may be rationalized by the strong anharmonicity of the intermolecular interactions.

5.
Phys Rev Lett ; 124(9): 093201, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202861

RESUMO

Rotation of the plane of the polarization of light in the presence of a magnetic field, known as the Faraday rotation, is a consequence of the electromagnetic nature of light and has been utilized in many optical devices. Current efforts aim to realize the ultrafast Faraday rotation on a subpicosecond timescale. Thereby, the Faraday medium should allow an ultrafast process by which in the presence of an ultrashort intense magnetic field, the light polarization rotates. We meet these criteria by applying an intense single cycle THz magnetic field to simple molecular liquids and demonstrate the rotation of the plane of polarization of an optical pulse traversing the liquids on a subpicosecond timescale. The effect is attributed to the deflection of an optically induced instantaneous electric polarization under the influence the THz magnetic field. The resolved Faraday rotation scales linearly with the THz magnetic field and quadratically with the molecular polarizability.

6.
J Phys Chem Lett ; 9(6): 1279-1283, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29474081

RESUMO

The dielectric response of liquids in the terahertz (THz) and sub-THz frequency range arises from low-energy collective molecular motions, which are often strongly influenced by intermolecular interactions. To shed light on the microscopic origin of the THz dielectric response of the simplest alcohol, methanol, we resonantly excite this liquid with an intense THz electric-field pulse and monitor the relaxation of the induced optical birefringence. We find a unipolar THz-Kerr-effect signal which, in contrast to aprotic polar liquids, shows a weak coupling between the THz electric field and the permanent molecular dipole moment of the liquid. We assign this weak coupling to the restricted translational rather than rotational nature of the excited mode. Our approach opens a new avenue to the assignment of the dielectric spectrum of liquids to a microscopic origin.

7.
Nat Commun ; 8: 15796, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28541272

RESUMO

This corrects the article DOI: 10.1038/ncomms14963.

8.
Nat Commun ; 8: 14963, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393836

RESUMO

Collective low-frequency molecular motions have large impact on chemical reactions and structural relaxation in liquids. So far, these modes have mostly been accessed indirectly by off-resonant optical pulses. Here, we provide evidence that intense terahertz (THz) pulses can resonantly excite reorientational-librational modes of aprotic and strongly polar liquids through coupling to the permanent molecular dipole moments. We observe a significantly enhanced response because the transient optical birefringence is up to an order of magnitude higher than obtained with optical excitation. Frequency-dependent measurements and a simple analytical model indicate that the enhancement arises from resonantly driven librations and their coupling to reorientational motion, assisted by the pump field and/or a cage translational mode. Our results open up the path to applications such as efficient molecular alignment, enhanced transient Kerr signals and systematic resonant nonlinear THz spectroscopy of the coupling between intermolecular modes in liquids.

9.
Opt Express ; 23(22): 28985-92, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561167

RESUMO

We apply intense terahertz (THz) electromagnetic pulses with field strengths exceeding 2 MV cm(-1) at ~1 THz to window and substrate materials commonly used in THz spectroscopy and determine the induced optical birefringence. Materials studied are diamond, sapphire, magnesium oxide (MgO), polymethylpentene (TPX), low-density polyethylene (LDPE), silicon nitride membrane (SiN) and crystalline quartz. We observe a Kerr-effect-type transient birefringence in all samples, except in quartz and Si, where, respectively, a linear electrooptic signal and a response beyond the perturbative regime are found. We extract the nonlinear refractive indices and the electrooptic coefficient (in the case of quartz) of these materials and discuss implications for their use as windows or substrates in THz pump-optical probe spectroscopy.

10.
J Phys Chem Lett ; 5(11): 1845-9, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26273863

RESUMO

The terahertz (THz) absorption bands of biomolecular hydration layers are generally swamped by absorption from bulk water. Using the disaccharide trehalose, we show that this limitation can be overcome by attaching a molecular probe. By time-resolving the fluorescence shift of the probe, a local THz spectrum is obtained. From the dependence on temperature and H2O/D2O exchange, it is concluded that the trehalose hydration layer is being observed. The region of dynamic water perturbation by the disaccharide encompasses the probe and is therefore larger than the first two solvation layers.

11.
J Phys Chem B ; 117(25): 7675-84, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23721291

RESUMO

The solvation dynamics of molecular probes is studied by broad-band fluorescence upconversion. The time-dependent position of the S1 → S0 emission band or of a vibronic line shape is measured with ~80 fs, 10 cm(-1) resolution. Polar solutes in acetonitrile and acetone, when excited into S1 with excess vibrational energy, show a dynamic Stokes shift which extends to the red beyond the quasistationary state. Equilibrium is then reached by a slower blue shift on a 10 ps time scale. In methanol, excess vibrational energy as large as ~14,000 cm(-1) shows no such effect. Nonpolar solutes exhibit an excess red shift of the emission band in both polar and nonpolar solvents even upon excitation near the vibronic origin. The observed dynamics are discussed in terms of transient heating of the excited chromophore, conformational change, and changes of the molecular cavity size. For solvation studies the optical excitation should be chosen close to the band origin.

13.
Phys Chem Chem Phys ; 14(38): 13350-64, 2012 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22933313

RESUMO

The photoisomerisation of 1,1'-diethyl-2,2'-pyridocyanine, regarded by Brooker as the simplest cyanine, is examined in methanol by time-resolved experiments and PCM/TD-CAM-B3LYP calculations. Femtosecond transient absorption, fluorescence upconversion, and stimulated Raman scattering, all with broadband coverage, provide a panoramic view of the photoreaction. On the computational side, evolving distributions on an S(1) minimum-energy path are obtained by solving the Smoluchowski equation for drift and diffusion of torsional motion. Absorption and fluorescence bandshapes are calculated and compared to the observations; near-quantitative agreement implies that the entire S(1) path has been observed. Most importantly the global S(1) minimum, i.e. the perpendicular "phantom state" P*, can be identified and characterized in this way. Internal conversion of P* (3.7 ps), assisted by solvent equilibration, leads to the hot ground state. Within 5 ps, vibrational bands of cis and trans isomers are recognized with the help of calculated Raman spectra. The differences between observed and simulated spectra are discussed.


Assuntos
Quinolinas/química , Absorção , Difusão , Isomerismo , Teoria Quântica , Análise Espectral Raman , Termodinâmica , Fatores de Tempo
14.
Carbohydr Res ; 346(18): 2960-4, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22078244

RESUMO

The common route to link quinolinium and pyridinium fluorophores to biomolecules via bromoacetic acid has failed in labeling the disaccharide trehalose with N-methyl-6-oxyquinolinium betaine: the unexpected, extremely high instability of the N-carboxymethyl ester was overcome by direct N-alkylation of the quinoline derivative with trehalose triflate.


Assuntos
Betaína/análogos & derivados , Betaína/química , Trealose/química , Estrutura Molecular , Estereoisomerismo
15.
Phys Chem Chem Phys ; 13(39): 17768-74, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21887426

RESUMO

Time-dependent Stokes shifts (TDSS) were measured for diverse polarity probes in water, heavy water, methanol, and benzonitrile, by broadband fluorescence up-conversion with 85 fs time resolution. In water the spectral dynamics is solute-independent and quantitatively described by simple dielectric continuum theory of solvation. In methanol the slower part of the TDSS is solute-dependent. A correlation with anisotropy decay suggests that methanol solvation dynamics is modulated by orientational solute diffusion. An empirical power law which links the solvation relaxation function of a mobile solute to that of an immobile solute is experimentally verified. Activation energies for the average relaxation rate are also given. Solvation dynamics in H(2)O and D(2)O are identical at and above 20 °C but diverge below.


Assuntos
Óxido de Deutério/química , Metanol/química , Sondas Moleculares/química , Termodinâmica , Água/química , Estrutura Molecular , Nitrilas/química , Solubilidade , Fatores de Tempo
18.
J Phys Chem A ; 113(1): 44-55, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19072623

RESUMO

Solvation dynamics of 4-aminophthalimide (4AP) in methanol is measured by broadband upconversion of the fluorescence band. The peak emission frequency nu(t) is determined from 100 fs onward with 85 fs time resolution. Polar solvation based on simple continuum theory, including solute polarizability, describes the temporal shape of nu(t) quantitatively. Extrapolation nu(t-->0) points to an initial emission frequency which agrees with the result from stationary spectroscopy in a nonpolar solvent. The extent (4300 cm(-1)) of the dynamic Stokes shift is largely due (50%) to H-bonding, however. The observations imply that H-bonds with 4AP adiabatically follow the dielectric relaxation of the methanol network. The stimulated emission band is also used to measure solvation dynamics. The evolving band is monitored by transient absorption spectroscopy of supercontinuum probe pulses. But the excited-state absorption spectrum, its relative amplitude, and its evolution are needed to extract nu(t) from such measurements. These key data are obtained by comparison with the upconversion results. Thus calibrated photometrically, 4AP transient absorption can be used to monitor solvation dynamics in any solvent. The excited-state absorption spectrum is assigned with the help of time-dependent density-functional calculations. Fluorescence excitation and double-resonance spectroscopy of isolated 4AP, cooled in a supersonic jet, is used to determine optically active modes. An intramolecular reorganization energy is inferred which is consistent with the value in 2-methylbutane (2025 cm(-1)). The crystal structure is also provided.

19.
Org Biomol Chem ; 6(16): 2852-60, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18688477

RESUMO

The synthesis of the title 7-deazaadenine 2'-deoxyribonucleosides bearing bipyridine, phenanthroline or terpyridine ligands linked to position 7 via an acetylene or phenylene spacer is reported based on aqueous cross-coupling reactions of unprotected 7-iodo-7-deaza-2'-deoxyadenosine with ligand-functionalized acetylenes or boronic acids. The aqueous cross-coupling with acetylene or boronate building blocks containing the Ru(bpy)(3)-type of complex gave the corresponding Ru-containing nucleosides. Photophysical and electrochemical properties were studied and the most efficient type of complex was selected for future luminescent and redox labelling of DNA. The title nucleosides also showed some cytostatic and anti-HCV activities.


Assuntos
2,2'-Dipiridil/química , Antineoplásicos/farmacologia , Hepacivirus/efeitos dos fármacos , Compostos Organometálicos/química , Rutênio/química , Tubercidina/análogos & derivados , Antivirais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxirredução , Fotoquímica , Tubercidina/síntese química , Tubercidina/química , Tubercidina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...