Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Environ Sci Pollut Res Int ; 30(45): 101250-101266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648922

RESUMO

This study aims at the application of a marine fungal consortium (Aspergillus sclerotiorum CRM 348 and Cryptococcus laurentii CRM 707) for the bioremediation of diesel oil-contaminated soil under microcosm conditions. The impact of biostimulation (BS) and/or bioaugmentation (BA) treatments on diesel-oil biodegradation, soil quality, and the structure of the microbial community were studied. The use of the fungal consortium together with nutrients (BA/BS) resulted in a TPH (Total Petroleum Hydrocarbon) degradation 42% higher than that obtained by natural attenuation (NA) within 120 days. For the same period, a 72 to 92% removal of short-chain alkanes (C12 to C19) was obtained by BA/BS, while only 3 to 65% removal was achieved by NA. BA/BS also showed high degradation efficiency of long-chain alkanes (C20 to C24) at 120 days, reaching 90 and 92% of degradation of icosane and heneicosane, respectively. In contrast, an increase in the levels of cyclosiloxanes (characterized as bacterial bioemulsifiers and biosurfactants) was observed in the soil treated by the consortium. Conversely, the NA presented a maximum of 37% of degradation of these alkane fractions. The 5-ringed PAH benzo(a)pyrene, was removed significantly better with the BA/BS treatment than with the NA (48 vs. 38 % of biodegradation, respectively). Metabarcoding analysis revealed that BA/BS caused a decrease in the soil microbial diversity with a concomitant increase in the abundance of specific microbial groups, including hydrocarbon-degrading (bacteria and fungi) and also an enhancement in soil microbial activity. Our results highlight the great potential of this consortium for soil treatment after diesel spills, as well as the relevance of the massive sequencing, enzymatic, microbiological and GC-HRMS analyses for a better understanding of diesel bioremediation.

2.
Methods Mol Biol ; 2571: 33-43, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152148

RESUMO

Due to the high impact of diet exposure on health, it is crucial the generation of robust data of regular dietary intake, hence improving the accuracy of dietary assessment. The metabolites derived from individual food or group of food have great potential to become biomarkers of food intake (BFIs) and provide more objective food consumption measurements.Herein, it is presented an untargeted metabolomic workflow for the discovery BFIs in blood and urine samples, from the study design to the biomarker identification. Samples are analyzed by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). A wide variety of compounds are covered by separate analyses of medium to nonpolar molecules and polar metabolites based on two LC separations as well as both positive and negative electrospray ionization. The main steps of data treatment of the comprehensive data sets and statistical analysis are described, as well as the principal considerations for the BFI identification.


Assuntos
Ingestão de Alimentos , Metabolômica , Biomarcadores , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos
3.
Environ Int ; 170: 107585, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265356

RESUMO

Identification of bioaccumulating contaminants of emerging concern (CECs) via suspect and non-target screening remains a challenging task. In this study, ion mobility separation with high-resolution mass spectrometry (IM-HRMS) was used to investigate the effects of drift time (DT) alignment on spectrum quality and peak annotation for screening of CECs in complex sample matrices using data independent acquisition (DIA). Data treatment approaches (Binary Sample Comparison) and prioritisation strategies (Halogen Match, co-occurrence of features in biota and the water phase) were explored in a case study on zebra mussel (Dreissena polymorpha) in Lake Mälaren, Sweden's largest drinking water reservoir. DT alignment evidently improved the fragment spectrum quality by increasing the similarity score to reference spectra from on average (±standard deviation) 0.33 ± 0.31 to 0.64 ± 0.30 points, thus positively influencing structure elucidation efforts. Thirty-two features were tentatively identified at confidence level 3 or higher using MetFrag coupled with the new PubChemLite database, which included predicted collision cross-section values from CCSbase. The implementation of predicted mobility data was found to support compound annotation. This study illustrates a quantitative assessment of the benefits of IM-HRMS on spectral quality, which will enhance the performance of future screening studies of CECs in complex environmental matrices.


Assuntos
Dreissena , Animais
4.
Anal Chem ; 94(25): 9040-9047, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35696365

RESUMO

The performance of gas chromatography (GC) combined with the improved identification properties of ion mobility separation coupled to high-resolution mass spectrometry (IMS-HRMS) is presented as a promising approach for the monitoring of (semi)volatile compounds in complex matrices. The soft ionization promoted by an atmospheric pressure chemical ionization (APCI) source designed for GC preserves the molecular and/or quasi-molecular ion information enabling a rapid, sensitive, and efficient wide-scope screening. Additionally, ion mobility separation (IMS) separates species of interest from coeluting matrix interferences and/or resolves isomers based on their charge, shape, and size, making IMS-derived collision cross section (CCS) a robust and matrix-independent parameter comparable between instruments. In this way, GC-APCI-IMS-HRMS becomes a powerful approach for both target and suspect screening due to the improvements in (tentative) identifications. In this work, mobility data for 264 relevant multiclass organic pollutants in environmental and food-safety fields were collected by coupling GC-APCI with IMS-HRMS, generating CCS information for molecular ion and/or protonated molecules and some in-source fragments. The identification power of GC-APCI-IMS-HRMS for the studied compounds was assessed in complex-matrix samples, including fish feed extracts, surface waters, and different fruit and vegetable samples.


Assuntos
Pressão Atmosférica , Espectrometria de Mobilidade Iônica , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos
5.
Environ Int ; 165: 107326, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35696846

RESUMO

The Spanish Mediterranean basin is particularly susceptible to climate change and human activities, making it vulnerable to the influence of anthropogenic contaminants. Therefore, conducting comprehensive and exhaustive water quality assessment in relevant water bodies of this basin is pivotal. In this work, surface water samples from coastal lagoons or estuaries were collected across the Spanish Mediterranean coastline and subjected to target and suspect screening of 1,585 organic micropollutants by liquid chromatography coupled to ion mobility separation and high resolution mass spectrometry. In total, 91 organic micropollutants could be confirmed and 5 were tentatively identified, with pharmaceuticals and pesticides being the most prevalent groups of chemicals. Chemical analysis data was compared with data on bioanalysis of those samples (recurrent aryl hydrocarbon receptor (AhR) activation, and estrogenic receptor (ER) inhibition in wetland samples affected by wastewater streams). The number of identified organic contaminants containing aromatic rings could explain the AhR activation observed. For the ER antagonistic effects, predictions on estrogenic inhibition potency for the detected compounds were used to explain the activities observed. The integration of chemical analysis with bioanalytical observations allowed a comprehensive overview of the quality of the water bodies under study.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental , Atividades Humanas , Humanos , Águas Residuárias/química , Poluentes Químicos da Água/análise
6.
Commun Biol ; 5(1): 161, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210552

RESUMO

Synthetic cannabinoids receptor agonists (SCRAs) are often almost completely metabolised, and hence their pharmacokinetics should be carefully evaluated for determining the most adequate biomarker in toxicological analysis. Two structurally related SCRAs, AMB-FUBINACA and AMB-CHMICA, were selected to evaluate their in vivo metabolism and pharmacokinetics using male Sprague-Dawley rats. Brain, liver, kidney, blood (serum) and urine samples were collected at different times to assess the differences in metabolism, metabolic reactions, tissue distribution and excretion. Both compounds experimented O-demethyl reaction, which occurred more rapidly for AMB-FUBINACA. The parent compounds and O-demethyl metabolites were highly bioaccumulated in liver, and were still detected in this tissue 48 h after injection. The different indazole/indole N-functionalisation produced diverse metabolic reactions in this moiety and thus, different urinary metabolites were formed. Out of the two compounds, AMB-FUBINACA seemed to easily cross the blood-brain barrier, presenting higher brain/serum concentrations ratio than AMB-CHMICA.


Assuntos
Canabinoides , Animais , Canabinoides/metabolismo , Indazóis , Masculino , Ratos , Ratos Sprague-Dawley , Valina/análogos & derivados
7.
J Mass Spectrom ; 56(5): e4718, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33813797

RESUMO

The use of ion mobility separations (IMSs) in metabolomics approaches has started to be deeply explored in the last years. In this work, the use of liquid chromatography (LC) coupled to IMS-quadrupole time-of-flight mass spectrometry (QTOF MS) has been evaluated in a metabolomics experiments using single injection of the samples. IMS has allowed obtaining cleaner fragmentation spectra, of nearly tandem MS quality, in data-independent acquisition mode. This is much useful in this research area as a second injection, generally applied in LC-QTOF MS workflows to obtain tandem mass spectra, is not necessary, saving time and evading possible compound degradation. As a case study, the smoke produced after combustion of herbal blends used to spray synthetic cannabinoids has been selected as study matrix. The smoke components were trapped in carbon cartridges, desorbed and analyzed by LC-IMS-QTOF MS using different separation mechanisms (reversed phase and HILIC) and acquiring in both positive and negative mode to widen the chemical domain. Partial Least Squares-Discriminant Analysis highlighted several compounds, and ratio between N-Isopropyl-3-(isoquinolinyl)-2-propen-1-amine and quinoline allowed differentiating between tobacco and herbal products. These two compounds were tentatively identified using the cleaner fragmentation spectra from a single injection in the IMS-QTOF MS, with additional confidence obtained by retention time (Rt) and collisional cross section (CCS) prediction using artificial neural networks. Data from this work show that LC-IMS-QTOF is an efficient technique in untargeted metabolomics, avoiding re-injection of the samples for elucidation purposes. In addition, the prediction models for Rt and CCS resulted of help in the elucidation process of potential biomarkers.

8.
J Mass Spectrom ; 56(7): e4673, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33155376

RESUMO

New psychoactive substances (NPS) are a wide group of compounds that try to mimic the effects produced by the 'classical' illicit drugs, including cannabis (synthetic cannabinoids), cocaine and amphetamines (synthetic cathinones) or heroin (synthetic opioids), and which health effects are still unknown for most of them. Nowadays, more than 700 compounds are being monitored by official organisms, some of which have been recently identified in seizures and/or intoxication cases. Toxicological analysis plays a pivotal role in NPS research. A comprehensive investigation on NPS, from the first identification of a novel substance until its detection in drug users to help in diagnostics and medical treatment, requires the use of a wide variety of instruments and analytical strategies. This paper illustrates the key role of mass spectrometry (MS) along a comprehensive investigation on NPS. The synthetic cannabinoid XLR-11 and the synthetic cathinone 5-PPDi have been chosen as representative substances of the most consumed NPS families. Moreover, both compounds have been investigated at our laboratory in different stages of the three-step strategy considered in this article. The initial identification and characterisation of the compound in consumption products, the first reported metabolic pathway and the development of analytical methodologies for its determination (and/or their metabolites) in different toxicological samples are described. The analytical strategies and MS instruments are briefly discussed to show the reader the possibilities that MS instrumentation offer to analytical scientists. This publication aims to be a starting point for those interested on the NPS research field from an analytical chemistry point of view.


Assuntos
Espectrometria de Massas , Psicotrópicos , Humanos
9.
Addict Biol ; : e12979, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33289258

RESUMO

Synthetic cathinones are the second most commonly seized new psychoactive substance family in Europe. These compounds have been related to several intoxication cases, including fatalities. Although the pharmacological effects, metabolism, and pharmacokinetics of cathinones have been studied, there is little information about the permeability of these compounds through the blood-brain barrier (BBB). This is an important parameter to understand the behavior and potency of cathinones. In this work, 13 selected cathinones have been analyzed in telencephalon tissue from Sprague-Dawley rats intraperitoneally dosed at 3 mg/kg. Our results revealed a direct relationship between compound polarity and BBB permeability, with higher permeability for the more polar cathinones. The chemical moieties present in the cathinone had an important impact on the BBB permeability, with lengthening of the α-alkyl chain or functionalization of the aromatic ring with alkyl moieties resulting in lower concentration in telencephalon tissue. Our data suggest that transport of cathinones is a carrier-mediated process, similar to cocaine transport across the BBB.

10.
Environ Sci Technol ; 54(23): 15120-15131, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207875

RESUMO

Currently, the most powerful approach to monitor organic micropollutants (OMPs) in environmental samples is the combination of target, suspect, and nontarget screening strategies using high-resolution mass spectrometry (HRMS). However, the high complexity of sample matrices and the huge number of OMPs potentially present in samples at low concentrations pose an analytical challenge. Ion mobility separation (IMS) combined with HRMS instruments (IMS-HRMS) introduces an additional analytical dimension, providing extra information, which facilitates the identification of OMPs. The collision cross-section (CCS) value provided by IMS is unaffected by the matrix or chromatographic separation. Consequently, the creation of CCS databases and the inclusion of ion mobility within identification criteria are of high interest for an enhanced and robust screening strategy. In this work, a CCS library for IMS-HRMS, which is online and freely available, was developed for 556 OMPs in both positive and negative ionization modes using electrospray ionization. The inclusion of ion mobility data in widely adopted confidence levels for identification in environmental reporting is discussed. Illustrative examples of OMPs found in environmental samples are presented to highlight the potential of IMS-HRMS and to demonstrate the additional value of CCS data in various screening strategies.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Peso Molecular , Fluxo de Trabalho
11.
J Agric Food Chem ; 68(39): 10937-10943, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32870673

RESUMO

Parent and modified mycotoxin analysis remains a challenge because of their chemical diversity, the presence of isomeric forms, and the lack of analytical standards. The creation and application of a collision cross section (CCS) database for mycotoxins may bring new opportunities to overcome these analytical challenges. However, it is still an open question whether common CCS databases can be used independently from the instrument type and ion mobility mass spectrometry (IM-MS) technologies, which utilize different methodologies for determining the gas-phase mobility. Here, we demonstrated the reproducibility of CCS measurements for mycotoxins in an interlaboratory study (average RSD 0.14% ± 0.079) and across different traveling wave IM-MS (TWIMS) systems commercially available (ΔCCS% < 2). The separation in the drift time dimension of critical pairs of isomers for modified mycotoxins was also achieved. In addition, the comparison of measured and predicted CCS values, including regulated and emerging mycotoxins, was addressed.


Assuntos
Espectrometria de Mobilidade Iônica/normas , Micotoxinas/química , Bases de Dados Factuais , Espectrometria de Mobilidade Iônica/métodos , Isomerismo , Reprodutibilidade dos Testes
12.
J Am Soc Mass Spectrom ; 31(7): 1610-1614, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32464059

RESUMO

New psychoactive substances (NPS) have become a serious public health problem, as they are continuously changing their structures and modifying their potency and effects on humans, and therefore, novel compounds are unceasingly appearing. One of the major challenges in forensic analysis, particularly related to the problem of NPS, is the development of fast screening methodologies that allow the detection of a wide variety of compounds in a single analysis. In this study, a novel application of the atmospheric solids analysis probe (ASAP) using medical swabs has been developed. The swab-ASAP was coupled to a triple quadrupole mass analyzer working under a data-dependent acquisition mode in order to perform a suspect screening of NPS in different types of samples as well as on surfaces. The compounds were automatically identified based on the observed fragmentation spectra using an in-house built MS/MS spectra library. The developed methodology was applied for the identification of psychoactive substances in research chemicals and herbal blends. The sensitivity of the method, as well as its applicability for surface analysis, was also assessed by identifying down to 1 µg of compound impregnated onto a laboratory table. Another remarkable application was the identification of cathinones and synthetic cannabinoids on the fingers of potential consumers. Interestingly, our data showed that NPS could be identified on the fingers after being in contact with the product and even after cleaning their hands by shaking off with a cloth. The methodology proposed in this paper can be applied for routine analyses of NPS in different matrix samples without the need to establish a list of target compounds prior to analysis.


Assuntos
Psicotrópicos/análise , Espectrometria de Massas em Tandem/métodos , Alcaloides/análise , Canabinoides/análise , Toxicologia Forense , Humanos , Preparações de Plantas/análise , Manejo de Espécimes
13.
J Pharm Anal ; 10(2): 147-156, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32373386

RESUMO

Synthetic cathinones are new psychoactive substances that represent a health risk worldwide. For most of the 130 reported compounds, information about toxicology and/or metabolism is not available, which hampers their detection (and subsequent medical treatment) in intoxication cases. The principles of forensic analytical chemistry and the use of powerful analytical techniques are indispensable for stablishing the most appropriate biomarkers for these substances. Human metabolic fate of synthetic cathinones can be assessed by the analysis of urine and blood obtained from authentic consumers; however, this type of samples is limited and difficult to access. In this work, the metabolic behaviour of three synthetic cathinones (4-CEC, 4-CPrC and 5-PPDi) and one amphetamine (3-FEA) has been evaluated by incubation with pooled human hepatocytes and metabolite identification has been performed by high-resolution mass spectrometry. This in vitro approach has previously shown its feasibility for obtaining excretory human metabolites. 4-CEC and 3-FEA were not metabolised, and for 4-CPrC only two minor metabolites were obtained. On the contrary, for the recently reported 5-PPDi, twelve phase I metabolites were elucidated. Up to our knowledge, this is the first metabolic study of an indanyl-cathinone. Data reported in this paper will allow the detection of these synthetic stimulants in intoxication cases, and will facilitate future research on the metabolic behaviour of other indanyl-based cathinones.

14.
J Chromatogr A ; 1602: 300-309, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31171357

RESUMO

Wastewater-based epidemiology (WBE) can give valuable light on the extent and actual use of new psychoactive substances (NPS). In this work, a fully validated methodology for the simultaneous determination of illicit drugs and NPS in wastewater by solid-phase extraction followed by UHPLC-MS/MS has been developed. The small sample volume (5 mL) required for analysis is of high interest, especially when performing large sampling campaigns involving many locations of different geographical origin, as it has been performed in the past. The method was applied to wastewater samples from different European locations and permitted the simultaneous monitoring of conventional drugs and NPS. Cocaine, amphetamine, MDMA, methamphetamine and ketamine were found in all wastewater samples, and several NPS (dipentylone, butylone, mephedrone, methedrone and methylone) were observed in some of the samples monitored. It is noteworthy that dipentylone was detected in wastewater for the very first time. Furthermore, a detailed comparison of micro liquid chromatography (µLC) and UHPLC, both coupled to tandem mass spectrometry, in terms of sensitivity and reproducibility has been made for the first time in the application field of WBE. An average increase factor of 14 (mass normalized data) was observed in sensitivity for µLC-MS/MS. The overall method performance was also compared (un-normalized data), and an average increase sensitivity factor of 4.5 was observed for µLC-MS/MS. However, large deviations in retention time (up to 0.4 min) affected the reproducibility and robustness of the µLC-MS/MS method when it was applied to wastewater analysis. Although in this work µLC-MS/MS was strongly influenced by the amount of matrix loaded in the separation device, its enhanced sensitivity and promotion of green chemistry (faster analysis time and less solvent consumption) allow to expect improved future applications, especially when analytes are present at very low concentrations.


Assuntos
Cromatografia Líquida/métodos , Drogas Ilícitas/análise , Psicotrópicos/análise , Esgotos/química , Espectrometria de Massas em Tandem/métodos , Águas Residuárias/química , Limite de Detecção , Reprodutibilidade dos Testes , Solventes , Poluentes Químicos da Água/análise
15.
Drug Test Anal ; 11(9): 1358-1368, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31192526

RESUMO

Synthetic cannabinoids (SCs) represented 45% of new psychoactive substances seizures in Europe (data from 2016). The consumption of SCs is an issue of concern due to their still unknown toxicity and effects on human health, the great variety of compounds synthetized, and the continuous modifications being made to their chemical structure to avoid regulatory issues. These compounds are extensively metabolized in the organism and often cannot be detected as the intact molecule in human urine. The monitoring of SCs in forensic samples must be performed by the analysis of their metabolites. In this work, a workflow for the comprehensive study of SC consumption is proposed and applied to 5F-APP-PICA (also known as PX 1 or SRF-30) and AMB-FUBINACA (also known as FUB-AMB or MMB-FUBINACA), based not only on the elucidation of their metabolites but also including functional data using the NanoLuc approach, previously published. Both cannabinoids were completely metabolized by human hepatocytes (12 and 8 metabolites were elucidated by high resolution mass spectrometry for 5F-APP-PICA and AMB-FUBINACA, respectively) and therefore suitable consumption markers are proposed. The bioassays revealed that 5F-APP-PICA presented lower activity than AMB-FUBINACA at CB1 and CB2 receptors, based on the half maximal effective concentration (EC50 ) and the maximum response (Emax ). These results are in agreement with the different intoxication cases found in the literature for AMB-FUBINACA.


Assuntos
Canabinoides/metabolismo , Hepatócitos/metabolismo , Indazóis/metabolismo , Psicotrópicos/metabolismo , Valina/análogos & derivados , Canabinoides/química , Humanos , Indazóis/química , Redes e Vias Metabólicas , Psicotrópicos/química , Espectrometria de Massas em Tandem , Valina/química , Valina/metabolismo
16.
Chemosphere ; 229: 538-548, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31100625

RESUMO

In the present work, the degradation of three cyanotoxins from the hepatotoxins group was investigated under laboratory-controlled experiments in water samples. Surface waters spiked with microcystin-LR (MC-LR), nodularin (NOD) and cylindrospermopsin (CYN) were subjected to hydrolysis, chlorination and photo-degradation, under both sunlight (SL) and ultraviolet (UV) radiation. A total of 12 transformation products (TPs) were detected and tentatively identified by liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF MS). These comprised: 6 chlorination TPs (3 from CYN and 3 from MC-LR, 2 isomers); 4 UV TPs (all from CYN); and 2 sunlight TPs (one isomer from MC-LR and another from NOD). No TPs were observed under hydrolysis conditions. The chemical structures for all TPs were tentatively proposed based on the accurate-mass QTOF MS full-spectra. Analysis of real-world samples collected from the Peñol reservoir (Antioquia, Colombia) revealed the presence of MC-LR and CYN as well as a sunlight TP identified in the laboratory experiments. Data presented in this article will assist further research on TPs potentially formed in future tertiary degradation processes applied for the removal of organic micro-pollutants in water; as well as improving available knowledge on the toxic implications of cyanobacterial toxins TPs in surface waters.


Assuntos
Toxinas Bacterianas/química , Microcistinas/química , Peptídeos Cíclicos/química , Uracila/análogos & derivados , Poluentes Químicos da Água/química , Alcaloides , Toxinas Bacterianas/análise , Cromatografia Líquida/métodos , Colômbia , Toxinas de Cianobactérias , Halogenação , Hidrólise , Toxinas Marinhas , Espectrometria de Massas , Microcistinas/análise , Peptídeos Cíclicos/análise , Luz Solar , Raios Ultravioleta , Uracila/análise , Uracila/química , Poluentes Químicos da Água/análise
17.
J Chromatogr A ; 1568: 101-107, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30005941

RESUMO

The accuracy and sensitivity of high resolution mass spectrometry (HRMS) enables the identification of candidate compounds with the use of mass spectrometric databases among other tools. However, retention time (RT) data in identification workflows has been sparingly used since it could be strongly affected by matrix or chromatographic performance. Retention Time Interpolation scaling (RTi) strategies can provide a more robust and valuable information than RT, gaining more confidence in the identification of candidate compounds in comparison to an analytical standard. Up to our knowledge, no RTi has been developed for LC-HRMS systems providing information when acquiring in either positive or negative ionization modes. In this work, an RTi strategy was developed by means of the use of 16 isotopically labelled reference standards, which can be spiked into a real sample without resulting in possible false positives or negatives. For testing the RTi performance, a mixture of several reference standards, emulating suspect analytes, were used. RTi values for these compounds were calculated both in solvent and spiked in a real matrix to assess the effect of either chromatographic parameters or matrix in different scenarios. It has been demonstrated that the variation of injection volume, chromatographic gradient and initial percentage of organic solvent injected does not considerably affect RTi calculation. Column aging and solid support of the stationary phase of the column, however, showed strong effects on the elution of several test compounds. Yet, RTi permitted the correction of elution shifts of most compounds. Furthermore, RTi was tested in 47 different matrices from food, biological, animal feeding and environmental origin. The application of RTi in both positive and negative ionization modes showed in general satisfactory results for most matrices studied. The RTi developed can be used in future LC-HRMS screening analysis giving an additional parameter, which facilitates tedious processing tasks and gain more confidence in the identification of (non)-suspect analytes.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Azitromicina/análise , Lactuca/química , Solventes , Fatores de Tempo
18.
Mass Spectrom Rev ; 37(3): 258-280, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-27750373

RESUMO

The analysis of illicit drugs in urban wastewater is the basis of wastewater-based epidemiology (WBE), and has received much scientific attention because the concentrations measured can be used as a new non-intrusive tool to provide evidence-based and real-time estimates of community-wide drug consumption. Moreover, WBE allows monitoring patterns and spatial and temporal trends of drug use. Although information and expertise from other disciplines is required to refine and effectively apply WBE, analytical chemistry is the fundamental driver in this field. The use of advanced analytical techniques, commonly based on combined chromatography-mass spectrometry, is mandatory because the very low analyte concentration and the complexity of samples (raw wastewater) make quantification and identification/confirmation of illicit drug biomarkers (IDBs) troublesome. We review the most-recent literature available (mostly from the last 5 years) on the determination of IDBs in wastewater with particular emphasis on the different analytical strategies applied. The predominance of liquid chromatography coupled to tandem mass spectrometry to quantify target IDBs and the essence to produce reliable and comparable results is illustrated. Accordingly, the importance to perform inter-laboratory exercises and the need to analyze appropriate quality controls in each sample sequence is highlighted. Other crucial steps in WBE, such as sample collection and sample pre-treatment, are briefly and carefully discussed. The article further focuses on the potential of high-resolution mass spectrometry. Different approaches for target and non-target analysis are discussed, and the interest to perform experiments under laboratory-controlled conditions, as a complementary tool to investigate related compounds (e.g., minor metabolites and/or transformation products in wastewater) is treated. The article ends up with the trends and future perspectives in this field from the authors' point of view. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:258-280, 2018.


Assuntos
Biomarcadores/análise , Drogas Ilícitas/análise , Espectrometria de Massas/métodos , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Águas Residuárias/análise , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Drogas Ilícitas/metabolismo , Limite de Detecção , Controle de Qualidade , Manejo de Espécimes , Eliminação de Resíduos Líquidos
19.
Anal Chem ; 89(12): 6583-6589, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28541664

RESUMO

The use of collision cross-section (CCS) values obtained by ion mobility high-resolution mass spectrometry has added a third dimension (alongside retention time and exact mass) to aid in the identification of compounds. However, its utility is limited by the number of experimental CCS values currently available. This work demonstrates the potential of artificial neural networks (ANNs) for the prediction of CCS values of pesticides. The predictor, based on eight software-chosen molecular descriptors, was optimized using CCS values of 205 small molecules and validated using a set of 131 pesticides. The relative error was within 6% for 95% of all CCS values for protonated molecules, resulting in a median relative error less than 2%. In order to demonstrate the potential of CCS prediction, the strategy was applied to spinach samples. It notably improved the confidence in the tentative identification of suspect and nontarget pesticides.


Assuntos
Redes Neurais de Computação , Resíduos de Praguicidas/análise , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Estrutura Molecular
20.
Environ Res ; 156: 31-38, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28314152

RESUMO

Assessing the presence of pesticides in environmental waters is particularly challenging because of the huge number of substances used which may end up in the environment. Furthermore, the occurrence of pesticide transformation products (TPs) and/or metabolites makes this task even harder. Most studies dealing with the determination of pesticides in water include only a small number of analytes and in many cases no TPs. The present study applied a screening method for the determination of a large number of pesticides and TPs in wastewater (WW) and surface water (SW) from Spain and Italy. Liquid chromatography coupled to high-resolution mass spectrometry (HRMS) was used to screen a database of 450 pesticides and TPs. Detection and identification were based on specific criteria, i.e. mass accuracy, fragmentation, and comparison of retention times when reference standards were available, or a retention time prediction model when standards were not available. Seventeen pesticides and TPs from different classes (fungicides, herbicides and insecticides) were found in WW in Italy and Spain, and twelve in SW. Generally, in both countries more compounds were detected in effluent WW than in influent WW, and in SW than WW. This might be due to the analytical sensitivity in the different matrices, but also to the presence of multiple sources of pollution. HRMS proved a good screening tool to determine a large number of substances in water and identify some priority compounds for further quantitative analysis.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/análise , Praguicidas/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão , Itália , Espectrometria de Massas , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA