Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Chem Res ; : 1-7, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37362320

RESUMO

Adaptor protein 2-associated kinase 1 (AAK1) is a member of the Ark1/Prk1 family of serine/threonine kinases and plays a role in modulating receptor endocytosis. AAK1 was identified as a potential therapeutic target for the treatment of neuropathic pain when it was shown that AAK1 knock out (KO) mice had a normal response to the acute pain phase of the mouse formalin model, but a reduced response to the persistent pain phase. Herein we report our early work investigating a series of pyrrolo[2,1-f][1,2,4]triazines as part of our efforts to recapitulate this KO phenotype with a potent, small molecule inhibitor of AAK1. The synthesis, structure-activity relationships (SAR), and in vivo evaluation of these AAK1 inhibitors is described.

2.
J Med Chem ; 65(18): 11927-11948, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36044257

RESUMO

GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.


Assuntos
Fármacos Anti-HIV , HIV-1 , Triterpenos , Humanos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Ácido Benzoico/química , Carbono , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico
3.
J Med Chem ; 65(6): 4534-4564, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35261239

RESUMO

Recent mouse knockout studies identified adapter protein-2-associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. BMS-986176/LX-9211 (4), as a highly selective, CNS-penetrable, and potent AAK1 inhibitor, has advanced into phase II human trials. On exploring the structure-activity relationship (SAR) around this biaryl alkyl ether chemotype, several additional compounds were found to be highly selective and potent AAK1 inhibitors with good druglike properties. Among these, compounds 43 and 58 showed very good efficacy in two neuropathic pain rat models and had excellent CNS penetration and spinal cord target engagement. Both compounds also exhibited favorable physicochemical and oral pharmacokinetic (PK) properties. Compound 58, a central pyridine isomer of BMS-986176/LX-9211 (4), was 4-fold more potent than 4 in vitro and showed lower plasma exposure needed to achieve similar efficacy compared to 4 in the CCI rat model. However, both 43 and 58 showed an inferior preclinical toxicity profile compared to 4.


Assuntos
Anestésicos Gerais , Neuralgia , Animais , Éteres/uso terapêutico , Camundongos , Neuralgia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Medula Espinal , Relação Estrutura-Atividade
4.
J Med Chem ; 65(6): 4457-4480, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35257579

RESUMO

Recent mouse knockout studies identified adapter protein-2 associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. Potent small-molecule inhibitors of AAK1 have been identified and show efficacy in various rodent pain models. (S)-1-((2',6-Bis(difluoromethyl)-[2,4'-bipyridin]-5-yl)oxy)-2,4-dimethylpentan-2-amine (BMS-986176/LX-9211) (34) was identified as a highly selective, CNS penetrant, potent AAK1 inhibitor from a novel class of bi(hetero)aryl ethers. BMS-986176/LX9211 (34) showed excellent efficacy in two rodent neuropathic pain models and excellent central nervous system (CNS) penetration and target engagement at the spinal cord with an average brain to plasma ratio of 20 in rat. The compound exhibited favorable physicochemical and pharmacokinetic properties, had an acceptable preclinical toxicity profile, and was chosen for clinical trials. BMS-986176/LX9211 (34) completed phase I trials with good human pharmacokinetics and minimum adverse events and is currently in phase II clinical trials for diabetic peripheral neuropathic pain (ClinicalTrials.gov identifier: NCT04455633) and postherpetic neuralgia (ClinicalTrials.gov identifier: NCT04662281).


Assuntos
Aminas , Neuralgia , Animais , Encéfalo , Camundongos , Neuralgia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Medula Espinal
5.
J Med Chem ; 61(16): 7289-7313, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30067361

RESUMO

GSK3532795, formerly known as BMS-955176 (1), is a potent, orally active, second-generation HIV-1 maturation inhibitor (MI) that advanced through phase IIb clinical trials. The careful design, selection, and evaluation of substituents appended to the C-3 and C-17 positions of the natural product betulinic acid (3) was critical in attaining a molecule with the desired virological and pharmacokinetic profile. Herein, we highlight the key insights made in the discovery program and detail the evolution of the structure-activity relationships (SARs) that led to the design of the specific C-17 amine moiety in 1. These modifications ultimately enabled the discovery of 1 as a second-generation MI that combines broad coverage of polymorphic viruses (EC50 <15 nM toward a panel of common polymorphisms representative of 96.5% HIV-1 subtype B virus) with a favorable pharmacokinetic profile in preclinical species.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Crisenos/química , Morfolinas/química , Relação Estrutura-Atividade , Triterpenos/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Administração Oral , Animais , Fármacos Anti-HIV/farmacocinética , Ácido Benzoico/química , Disponibilidade Biológica , Técnicas de Química Sintética , Crisenos/farmacologia , Cães , Desenho de Fármacos , Estabilidade de Medicamentos , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos , Camundongos Knockout , Microssomos Hepáticos/efeitos dos fármacos , Morfolinas/farmacologia , Polimorfismo Genético , Ratos Sprague-Dawley , Triterpenos/farmacologia
6.
ACS Med Chem Lett ; 9(12): 1217-1222, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30613329

RESUMO

In solving the P-gp and BCRP transporter-mediated efflux issue in a series of benzofuran-derived pan-genotypic palm site inhibitors of the hepatitis C virus NS5B replicase, it was found that close attention to physicochemical properties was essential. In these compounds, where both molecular weight (MW >579) and TPSA (>110 Å2) were high, attenuation of polar surface area together with weakening of hydrogen bond acceptor strength of the molecule provided a higher intrinsic membrane permeability and more desirable Caco-2 parameters, as demonstrated by trifluoroacetamide 11 and the benchmark N-ethylamino analog 12. In addition, the tendency of these inhibitors to form intramolecular hydrogen bonds potentially contributes favorably to the improved membrane permeability and absorption. The functional group minimization that resolved the efflux problem simultaneously maintained potent inhibitory activity toward a gt-2 HCV replicon due to a switching of the role of substituents in interacting with the Gln414 binding pocket, as observed in gt-2a NS5B/inhibitor complex cocrystal structures, thus increasing the efficiency of the optimization. Noteworthy, a novel intermolecular S=O···C=O n → π* type interaction between the ligand sulfonamide oxygen atom and the carbonyl moiety of the side chain of Gln414 was observed. The insights from these structure-property studies and crystallography information provided a direction for optimization in a campaign to identify second generation pan-genotypic NS5B inhibitors.

7.
J Med Chem ; 60(10): 4369-4385, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28430437

RESUMO

The hepatitis C virus (HCV) NS5B replicase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Inspired by the overlay of bound structures of three structurally distinct NS5B palm site allosteric inhibitors, the high-throughput screening hit anthranilic acid 4, the known benzofuran analogue 5, and the benzothiadiazine derivative 6, an optimization process utilizing the simple benzofuran template 7 as a starting point for a fragment growing approach was pursued. A delicate balance of molecular properties achieved via disciplined lipophilicity changes was essential to achieve both high affinity binding and a stringent targeted absorption, distribution, metabolism, and excretion profile. These efforts led to the discovery of BMS-929075 (37), which maintained ligand efficiency relative to early leads, demonstrated efficacy in a triple combination regimen in HCV replicon cells, and exhibited consistently high oral bioavailability and pharmacokinetic parameters across preclinical animal species. The human PK properties from the Phase I clinical studies of 37 were better than anticipated and suggest promising potential for QD administration.


Assuntos
Antivirais/farmacologia , Antivirais/farmacocinética , Benzofuranos/farmacologia , Benzofuranos/farmacocinética , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Proteínas não Estruturais Virais/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Animais , Antivirais/química , Benzofuranos/química , Cães , Descoberta de Drogas , Haplorrinos , Hepatite C/virologia , Humanos , Masculino , Simulação de Acoplamento Molecular , Ratos , Ratos Sprague-Dawley , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
8.
Eur J Pharm Biopharm ; 117: 333-345, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28455207

RESUMO

Variability in oral absorption in pre-clinical species makes human dose projection challenging. In this study, we investigated the mechanistic basis of variability in oral absorption of a model hydrophobic compound with pH-dependent solubility, BMS-955829, after oral dosing in rats, dogs, and cynomolgus monkeys. The contribution of regional absorption to pharmacokinetic variability was assessed in ported monkeys by direct intraduodenal and intraileal administration. The effect of BMS-955829 on gastric emptying and intestinal motility was investigated by radiography after co-administration of barium. BMS-955829 exhibited species dependent oral bioavailability, with high variability in monkeys. During regional absorption studies, highest rate of drug absorption was observed after direct intraduodenal administration. Radiography studies indicated that BMS-955829 slowed gastric emptying and intestinal motility. The effect of rate and site of drug release on oral exposure was studied using different drug product formulations. Reducing the rate of drug release reduced oral exposure variability without compromising exposure in cynomolgus monkeys. This effect was likely mediated by avoidance of rapid initial absorption and drug effect on gastric emptying and intestinal transit within the biorelevant timeframe. Thus, drug release rate can modulate the effect of physiological factors on variability in the oral absorption of sensitive compounds.


Assuntos
Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/metabolismo , Motilidade Gastrointestinal/fisiologia , Absorção Intestinal/fisiologia , Administração Oral , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Cães , Esvaziamento Gástrico/efeitos dos fármacos , Esvaziamento Gástrico/fisiologia , Fármacos Gastrointestinais/química , Motilidade Gastrointestinal/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Macaca fascicularis , Masculino , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/fisiologia
9.
ACS Med Chem Lett ; 7(12): 1082-1086, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994742

RESUMO

The metabotropic glutamate receptor 5 (mGluR5) is an attractive target for the treatment of schizophrenia due to its role in regulating glutamatergic signaling in association with the N-methyl-d-aspartate receptor (NMDAR). We describe the synthesis of 1H-pyrazolo[3,4-b]pyridines and their utility as mGluR5 positive allosteric modulators (PAMs) without inherent agonist activity. A facile and convergent synthetic route provided access to a structurally diverse set of analogues that contain neither the aryl-acetylene-aryl nor aryl-methyleneoxy-aryl elements, the predominant structural motifs described in the literature. Binding studies suggest that members of our new chemotype do not engage the receptor at the MPEP and CPPHA mGluR5 allosteric sites. SAR studies culminated in the first non-MPEP site PAM, 1H-pyrazolo[3,4-b]pyridine 31 (BMT-145027), to improve cognition in a preclinical rodent model of learning and memory.

10.
Bioorg Med Chem Lett ; 26(24): 5871-5876, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27856084

RESUMO

Schizophrenia is a serious illness that affects millions of patients and has been associated with N-methyl-d-aspartate receptor (NMDAR) hypofunction. It has been demonstrated that activation of metabotropic glutamate receptor 5 (mGluR5) enhances NMDA receptor function, suggesting the potential utility of mGluR5 positive allosteric modulators (PAMs) in the treatment of schizophrenia. Herein we describe the optimization of an mGluR5 PAM by replacement of a phenyl with aliphatic heterocycles and carbocycles as a strategy to reduce bioactivation in a biaryl acetylene chemotype. Replacement with a difluorocyclobutane followed by further optimization culminated in the identification of compound 32, a low fold shift PAM with reduced bioactivation potential. Compound 32 demonstrated favorable brain uptake and robust efficacy in mouse novel object recognition (NOR) at low doses.


Assuntos
Oxazolidinonas/farmacologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Humanos , Camundongos , Estrutura Molecular , Oxazolidinonas/síntese química , Oxazolidinonas/química , Piridinas/síntese química , Piridinas/química , Ratos , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 26(17): 4165-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27496211

RESUMO

Herein we describe the structure activity relationships uncovered in the pursuit of an mGluR5 positive allosteric modulator (PAM) for the treatment of schizophrenia. It was discovered that certain modifications of an oxazolidinone-based chemotype afforded predictable changes in the pharmacological profile to give analogs with a wide range of functional activities. The discovery of potent silent allosteric modulators (SAMs) allowed interrogation of the mechanism-based liabilities associated with mGluR5 activation and drove our medicinal chemistry effort toward the discovery of low efficacy (fold shift) PAMs devoid of agonist activity. This work resulted in the identification of dipyridyl 22 (BMS-952048), a compound with a favorable free fraction, efficacy in a rodent-based cognition model, and low potential for convulsions in mouse.


Assuntos
Convulsivantes/química , Oxazolidinonas/química , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Convulsivantes/metabolismo , Convulsivantes/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxazolidinonas/metabolismo , Oxazolidinonas/farmacologia , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/química , Reconhecimento Psicológico/efeitos dos fármacos , Relação Estrutura-Atividade
12.
J Pharmacol Exp Ther ; 358(3): 371-86, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27411717

RESUMO

To identify novel targets for neuropathic pain, 3097 mouse knockout lines were tested in acute and persistent pain behavior assays. One of the lines from this screen, which contained a null allele of the adapter protein-2 associated kinase 1 (AAK1) gene, had a normal response in acute pain assays (hot plate, phase I formalin), but a markedly reduced response to persistent pain in phase II formalin. AAK1 knockout mice also failed to develop tactile allodynia following the Chung procedure of spinal nerve ligation (SNL). Based on these findings, potent, small-molecule inhibitors of AAK1 were identified. Studies in mice showed that one such inhibitor, LP-935509, caused a reduced pain response in phase II formalin and reversed fully established pain behavior following the SNL procedure. Further studies showed that the inhibitor also reduced evoked pain responses in the rat chronic constriction injury (CCI) model and the rat streptozotocin model of diabetic peripheral neuropathy. Using a nonbrain-penetrant AAK1 inhibitor and local administration of an AAK1 inhibitor, the relevant pool of AAK1 for antineuropathic action was found to be in the spinal cord. Consistent with these results, AAK1 inhibitors dose-dependently reduced the increased spontaneous neural activity in the spinal cord caused by CCI and blocked the development of windup induced by repeated electrical stimulation of the paw. The mechanism of AAK1 antinociception was further investigated with inhibitors of α2 adrenergic and opioid receptors. These studies showed that α2 adrenergic receptor inhibitors, but not opioid receptor inhibitors, not only prevented AAK1 inhibitor antineuropathic action in behavioral assays, but also blocked the AAK1 inhibitor-induced reduction in spinal neural activity in the rat CCI model. Hence, AAK1 inhibitors are a novel therapeutic approach to neuropathic pain with activity in animal models that is mechanistically linked (behaviorally and electrophysiologically) to α2 adrenergic signaling, a pathway known to be antinociceptive in humans.


Assuntos
Neuralgia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Nociceptividade/efeitos dos fármacos , Fenótipo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Ratos , Medula Espinal/efeitos dos fármacos , Medula Espinal/enzimologia , Medula Espinal/fisiopatologia
13.
ACS Med Chem Lett ; 7(6): 568-72, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27326328

RESUMO

HIV-1 maturation inhibition (MI) has been clinically validated as an approach to the control of HIV-1 infection. However, identifying an MI with both broad polymorphic spectrum coverage and good oral exposure has been challenging. Herein, we describe the design, synthesis, and preclinical characterization of a potent, orally active, second generation HIV-1 MI, BMS-955176 (2), which is currently in Phase IIb clinical trials as part of a combination antiretroviral regimen.

14.
ACS Med Chem Lett ; 7(3): 289-93, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26985317

RESUMO

Positive allosteric modulators (PAMs) of the metabotropic glutamate receptor subtype 5 (mGluR5) are of interest due to their potential therapeutic utility in schizophrenia and other cognitive disorders. Herein we describe the discovery and optimization of a novel oxazolidinone-based chemotype to identify BMS-955829 (4), a compound with high functional PAM potency, excellent mGluR5 binding affinity, low glutamate fold shift, and high selectivity for the mGluR5 subtype. The low fold shift and absence of agonist activity proved critical in the identification of a molecule with an acceptable preclinical safety profile. Despite its low fold shift, 4 retained efficacy in set shifting and novel object recognition models in rodents.

15.
J Pharm Sci ; 104(9): 2813-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25631585

RESUMO

Asunaprevir (ASV; BMS-650032), a low nanomolar inhibitor of the hepatitis C virus (HCV) NS3 protease, is currently under development, in combination with other direct-acting antiviral (DAA) agents for the treatment of chronic HCV infection. Extensive nonclinical and pharmacokinetic studies have been conducted to characterize the ADME properties of ASV. ASV has a moderate to high clearance in preclinical species. In vitro reaction phenotyping studies demonstrated that the oxidative metabolism of ASV is primarily mediated via CYP3A4; however, studies in bile-duct cannulated rats and dogs suggest that biliary elimination may contribute to overall ASV clearance. ASV is shown to have hepatotropic disposition in all preclinical species tested (liver to plasma ratios >40). The translation of in vitro replicon potency to clinical viral load decline for a previous lead BMS-605339 was leveraged to predict a human dose of 2 mg BID for ASV. Clinical drug-drug interaction (DDI) studies have shown that at therapeutically relevant concentrations of ASV the potential for a DDI is minimal. The need for an interferon free treatment combined with ASV's initial clinical trial data support development of ASV as part of a fixed dose combination for the treatment of patients chronically infected with HCV genotype 1.


Assuntos
Antivirais/farmacocinética , Hepacivirus/enzimologia , Isoquinolinas/farmacocinética , Inibidores de Proteases/farmacocinética , Sulfonamidas/farmacocinética , Proteínas não Estruturais Virais/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Bile/metabolismo , Disponibilidade Biológica , Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Cães , Hepacivirus/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Macaca fascicularis , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley
16.
Antimicrob Agents Chemother ; 58(6): 3485-95, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24733465

RESUMO

BMS-791325 is an allosteric inhibitor that binds to thumb site 1 of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. BMS-791325 inhibits recombinant NS5B proteins from HCV genotypes 1, 3, 4, and 5 at 50% inhibitory concentrations (IC50) below 28 nM. In cell culture, BMS-791325 inhibited replication of HCV subgenomic replicons representing genotypes 1a and 1b at 50% effective concentrations (EC50s) of 3 nM and 6 nM, respectively, with similar (3 to 18 nM) values for genotypes 3a, 4a, and 5a. Potency against genotype 6a showed more variability (9 to 125 nM), and activity was weaker against genotype 2 (EC50, 87 to 925 nM). Specificity was demonstrated by the absence of activity (EC50s of >4 µM) against a panel of mammalian viruses, and cytotoxic concentrations (50%) were >3,000-fold above the HCV EC50. Resistance substitutions selected by BMS-791325 in genotype 1 replicons mostly mapped to a single site, NS5B amino acid 495 (P495A/S/L/T). Additive or synergistic activity was observed in combination studies using BMS-791325 with alfa interferon plus ribavirin, inhibitors of NS3 protease or NS5A, and other classes of NS5B inhibitor (palm site 2-binding or nucleoside analogs). Plasma and liver exposures in vivo in several animal species indicated that BMS-791325 has a hepatotropic disposition (liver-to-plasma ratios ranging from 1.6- to 60-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥ 10-fold above the inhibitor EC50s observed with HCV genotype 1 replicons. These findings support the evaluation of BMS-791325 in combination regimens for the treatment of HCV. Phase 3 studies are ongoing.


Assuntos
Antivirais/farmacologia , Benzazepinas/farmacologia , Hepacivirus/enzimologia , Indóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Regulação Alostérica , Animais , Antivirais/química , Benzazepinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cães , Farmacorresistência Viral , Quimioterapia Combinada , Genótipo , Hepacivirus/efeitos dos fármacos , Humanos , Indóis/química , Interferon-alfa/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Replicon/efeitos dos fármacos , Ribavirina/farmacologia , Células Vero
17.
J Pharm Sci ; 103(6): 1891-902, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24700293

RESUMO

BMS-605339 is a potent HCV NS3 protease inhibitor that suppresses hepatitis C virus replication and was under investigation as an oral agent for the treatment of this disease. In vitro and in vivo studies were conducted in mouse, rat, dog, and monkey to characterize the pharmacokinetics and metabolism of this compound. BMS-605339 was predicted to be a moderate clearance compound in the human, based on human microsomal and hepatocyte data. Nearly all metabolism of BMS-605339 was oxidative; CYP3A4 is likely to play a key role in the metabolic clearance of this compound. Moderate to high Caco-2 permeability was observed for this compound, with the potential for P-glycoprotein involvement. The oral bioavailability of BMS-605339 was variable and dose dependent, suggesting low absorption, possibly because of transporter involvement. BMS-605339 possesses low intrinsic aqueous solubility and, in both rat and dog, administration of an aqueous suspension suggested that BMS-605339 absorption is likely solubility limited. Liver exposure of BMS-605339 was consistently higher than plasma exposure in all species tested (mouse, rat, and dog), indicating the potential for active uptake into hepatocytes. The overall preclinical pharmacokinetic profile supported the selection and development of BMS-605339 as a clinical candidate.


Assuntos
Antivirais/farmacocinética , Isoquinolinas/farmacocinética , Sulfonamidas/farmacocinética , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Disponibilidade Biológica , Células CACO-2 , Cães , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley
18.
J Med Chem ; 57(5): 1708-29, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24555570

RESUMO

The discovery of BMS-605339 (35), a tripeptidic inhibitor of the NS3/4A enzyme, is described. This compound incorporates a cyclopropylacylsulfonamide moiety that was designed to improve the potency of carboxylic acid prototypes through the introduction of favorable nonbonding interactions within the S1' site of the protease. The identification of 35 was enabled through the optimization and balance of critical properties including potency and pharmacokinetics (PK). This was achieved through modulation of the P2* subsite of the inhibitor which identified the isoquinoline ring system as a key template for improving PK properties with further optimization achieved through functionalization. A methoxy moiety at the C6 position of this isoquinoline ring system proved to be optimal with respect to potency and PK, thus providing the clinical compound 35 which demonstrated antiviral activity in HCV-infected patients.


Assuntos
Antivirais/uso terapêutico , Descoberta de Drogas , Hepatite C/tratamento farmacológico , Isoquinolinas/uso terapêutico , Inibidores de Proteases/uso terapêutico , Sulfonamidas/uso terapêutico , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Cristalografia por Raios X , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Isoquinolinas/química , Modelos Moleculares , Inibidores de Proteases/química , Sulfonamidas/química
19.
J Med Chem ; 57(5): 2013-32, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24521299

RESUMO

The biphenyl derivatives 2 and 3 are prototypes of a novel class of NS5A replication complex inhibitors that demonstrate high inhibitory potency toward a panel of clinically relevant HCV strains encompassing genotypes 1-6. However, these compounds exhibit poor systemic exposure in rat pharmacokinetic studies after oral dosing. The structure-activity relationship investigations that improved the exposure properties of the parent bis-phenylimidazole chemotype, culminating in the identification of the highly potent NS5A replication complex inhibitor daclatasvir (33) are described. An element critical to success was the realization that the arylglycine cap of 2 could be replaced with an alkylglycine derivative and still maintain the high inhibitory potency of the series if accompanied with a stereoinversion, a finding that enabled a rapid optimization of exposure properties. Compound 33 had EC50 values of 50 and 9 pM toward genotype-1a and -1b replicons, respectively, and oral bioavailabilities of 38-108% in preclinical species. Compound 33 provided clinical proof-of-concept for the NS5A replication complex inhibitor class, and regulatory approval to market it with the NS3/4A protease inhibitor asunaprevir for the treatment of HCV genotype-1b infection has recently been sought in Japan.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Imidazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacocinética , Área Sob a Curva , Carbamatos , Cães , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Hepacivirus/enzimologia , Hepacivirus/fisiologia , Imidazóis/química , Imidazóis/farmacocinética , Espectroscopia de Ressonância Magnética , Pirrolidinas , Ratos , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Valina/análogos & derivados
20.
J Med Chem ; 57(5): 1855-79, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24397558

RESUMO

Described herein are structure-activity relationship studies that resulted in the optimization of the activity of members of a class of cyclopropyl-fused indolobenzazepine HCV NS5B polymerase inhibitors. Subsequent iterations of analogue design and syntheses successfully addressed off-target activities, most notably human pregnane X receptor (hPXR) transactivation, and led to significant improvements in the physicochemical properties of lead compounds. Those analogues exhibiting improved solubility and membrane permeability were shown to have notably enhanced pharmacokinetic profiles. Additionally, a series of alkyl bridged piperazine carboxamides was identified as being of particular interest, and from which the compound BMS-791325 (2) was found to have distinguishing antiviral, safety, and pharmacokinetic properties that resulted in its selection for clinical evaluation.


Assuntos
Antivirais/farmacologia , Benzazepinas/farmacologia , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Regulação Alostérica , Animais , Antivirais/química , Antivirais/farmacocinética , Benzazepinas/química , Benzazepinas/farmacocinética , Cães , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Humanos , Indóis/química , Indóis/farmacocinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...