Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543059

RESUMO

Anti-inflammatory agents are widely used for the treatment of inflammatory diseases. Nevertheless, the associated side effects of the available drugs make it necessary to search for new anti-inflammatory drugs. Here, we investigated the anti-inflammatory activity of solidagenone. Initially, we observed that a single dose of 30, 60, or 90 mg/kg of solidagenone did not result in mortality or elicit any discernible signs of toxicity in mice. At the same doses, solidagenone promoted a significant reduction in the migration of neutrophils in an acute peritonitis model and decreased mortality in a lipopolysaccharide-induced endotoxic shock model. Interestingly, treatment with solidagenone conferred a protective effect against leukopenia and thrombocytopenia, hematological disorders commonly observed in sepsis conditions. In addition, treatment with all the doses of solidagenone promoted a significant reduction in nitric oxide, TNF-α, and IL-1ß levels relative to the LPS-stimulated vehicle-treated cultures. Furthermore, gene expression and in silico analyses also supported the modulation of the NF-κB pathway by solidagenone. Finally, in silico pharmacokinetics predictions indicated a favorable drugability profile for solidagenone. Taken together, the findings of the present investigation show that solidagenone exhibits significant anti-inflammatory properties in acute experimental models, potentially through the modulation of the NF-κB signaling pathway.

2.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36145319

RESUMO

Ligand and structure-based computational screenings were carried out to identify flavonoids with potential anticancer activity. Kushenol E, a flavonoid with proven anticancer activity and, at the same time, an allosteric site binder of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1), was used as the reference compound. Molecular docking and molecular dynamics simulations were performed for the screened flavonoids with known anticancer activity. The following two of these flavonoids were identified as potential inhibitors of IDO1: dichamanetin and isochamanetin. Molecular dynamics simulations were used to assess the conformational profile of IDO1-flavonoids complexes, as well as for calculating the bind-free energies.

3.
Eur J Pharmacol ; 885: 173367, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750364

RESUMO

Existing evidence suggests that the local anaesthetic mexiletine can be beneficial for patients with asthma. However, caution is required since anaesthesia of the airways inhibits protective bronchodilator neuronal reflexes, limiting applications in conditions of hyperirritable airways. Here, we describe the synthesis of a new series of mexiletine analogues, which were screened for reduced activity in Na+ channels and improved smooth muscle relaxant effects, that were evaluated using the patch-clamp technique and an isolated tracheal organ bath, respectively. JME-173 (1-(4-bromo-3,5-dimethylphenoxy)propan-2-amine) was the most effective among the four mexiletine analogues investigated. JME-173 was then studied in vivo using a murine model of lung inflammation induced by cigarette smoke (CS) and in vitro using neutrophil chemotaxis and mast cell degranulation assays. Finally, the JME-173 pharmacokinetic profile was assessed using HPLC-MS/MS bioanalytical method. JME-173 directly inhibited IL-8 (CXCL8)- and FMLP-induced human neutrophil chemotaxis and allergen-induced mast cell degranulation. After oral administration 1 h before CS exposure, JME-173 (50 mg/kg) strongly reduced the increased number of macrophages and neutrophils recovered in the bronchoalveolar effluent without altering lymphocyte counts. Pharmacokinetic experiments of JME-173 (10 mg/kg, orally) showed values of maximum concentration (Cmax), maximum time (Tmax), area under the blood concentration-time curve (AUC0-t) and area under the blood concentration-time curve from 0-Inf (AUC0-inf) of 163.3 ± 38.3 ng/mL, 1.2 ± 0.3 h, 729.4 ± 118.3 ng*h/ml and 868.9 ± 117.1 ng*h/ml (means ± S.E.M.), respectively. Collectively, these findings suggest that JME-173 has the potential to be an effective oral treatment for diseases associated with bronchoconstriction and inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Mexiletina/análogos & derivados , Mexiletina/farmacologia , Parassimpatolíticos/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Animais , Área Sob a Curva , Líquido da Lavagem Broncoalveolar/citologia , Degranulação Celular/efeitos dos fármacos , Humanos , Masculino , Mastócitos/efeitos dos fármacos , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , Técnicas de Patch-Clamp , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Ratos , Ratos Wistar , Fumaça , Relação Estrutura-Atividade , Produtos do Tabaco
4.
J Pharm Sci ; 105(9): 2656-2664, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26886313

RESUMO

Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved.


Assuntos
Benzoxazinas/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Alcinos , Cristalização , Cristalografia por Raios X , Ciclopropanos , Estrutura Molecular , Soluções
5.
PLoS One ; 8(11): e78387, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260115

RESUMO

Epigallocatechin-3-gallate (EGCG), a dietary polyphenol (flavanol) from green tea, possesses leishmanicidal and antitrypanosomal activity. Mitochondrial damage was observed in Leishmania treated with EGCG, and it contributed to the lethal effect. However, the molecular target has not been defined. In this study, EGCG, (+)-catechin and (-)-epicatechin were tested against recombinant arginase from Leishmania amazonensis (ARG-L) and rat liver arginase (ARG-1). The compounds inhibit ARG-L and ARG-1 but are more active against the parasite enzyme. Enzyme kinetics reveal that EGCG is a mixed inhibitor of the ARG-L while (+)-catechin and (-)-epicatechin are competitive inhibitors. The most potent arginase inhibitor is (+)-catechin (IC50 = 0.8 µM) followed by (-)-epicatechin (IC50 = 1.8 µM), gallic acid (IC50 = 2.2 µM) and EGCG (IC50 = 3.8 µM). Docking analyses showed different modes of interaction of the compounds with the active sites of ARG-L and ARG-1. Due to the low IC50 values obtained for ARG-L, flavanols can be used as a supplement for leishmaniasis treatment.


Assuntos
Arginase/antagonistas & inibidores , Arginase/química , Catequina/análogos & derivados , Catequina/química , Inibidores Enzimáticos/química , Leishmania/enzimologia , Fígado/enzimologia , Simulação de Acoplamento Molecular , Proteínas de Protozoários/antagonistas & inibidores , Animais , Anticarcinógenos/química , Ratos
6.
Food Chem ; 141(3): 2253-62, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23870955

RESUMO

Fisetin, quercetin, luteolin and 7,8-hydroxyflavone show high activity in Leishmania cultures and present low toxicity to mammalian cells. In this work, the structural aspects of 13 flavonoids were analyzed for their inhibition of the arginase enzyme from Leishmania (Leishmania) amazonensis. A higher potency of arginase inhibition was observed with fisetin, which was four and ten times greater than that of quercetin and luteolin, respectively. These data show that the hydroxyl group at position 3 contributed significantly to the inhibitory activity of arginase, while the hydroxyl group at position 5 did not. The absence of the catechol group on apigenin drastically decreased arginase inhibition. Additionally, the docking of compounds showed that the inhibitors interact with amino acids involved in the Mn(+2)-Mn(+2) metal bridge formation at the catalytic site. Due to the low IC50 values of these flavonoids, they may be used as a food supplement in leishmaniasis treatment.


Assuntos
Arginase/antagonistas & inibidores , Inibidores Enzimáticos/química , Flavonoides/química , Leishmania/enzimologia , Luteolina/química , Proteínas de Protozoários/antagonistas & inibidores , Arginase/química , Arginase/genética , Arginase/metabolismo , Domínio Catalítico , Flavonóis , Humanos , Cinética , Leishmania/genética , Leishmania/fisiologia , Leishmaniose/parasitologia , Modelos Moleculares , Estrutura Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
Biophys Chem ; 98(3): 287-300, 2002 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-12128181

RESUMO

The development of drug resistance is reducing the efficiency of antifolates as antimalarials. This phenomenon has been linked to the occurrence of mutations in the parasite's dihydrofolate reductase (DHFR). In this way, the resistance to pyrimethamine and cycloguanil, two potent inhibitors of P. falciparum DHFR, is mainly related to mutations (single and crossed) at residues 16, 51, 59, 108 and 164 of the enzyme. In this work, we have refined a recently proposed homology-model of P. falciparum DHFR, and the resulting structure was used to obtain models for 14 mutant enzymes, employing molecular modeling. Ternary complexes of the mutant enzymes with these inhibitors have been superimposed to equivalent ternary complexes of the wild-type enzyme, allowing the proposition of hypotheses for the role of each mutation in drug resistance. Based on these results, possible reasons for antifolate resistance have been proposed.


Assuntos
Plasmodium falciparum/genética , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Animais , Galinhas , Resistência a Medicamentos , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Humanos , Fígado/enzimologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Mutação Puntual , Proguanil , Pirimetamina/química , Pirimetamina/farmacologia , Alinhamento de Sequência , Triazinas/química , Triazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...