Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3606, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697975

RESUMO

Amyotrophic Lateral Sclerosis (ALS), like many other neurodegenerative diseases, is highly heritable, but with only a small fraction of cases explained by monogenic disease alleles. To better understand sporadic ALS, we report epigenomic profiles, as measured by ATAC-seq, of motor neuron cultures derived from a diverse group of 380 ALS patients and 80 healthy controls. We find that chromatin accessibility is heavily influenced by sex, the iPSC cell type of origin, ancestry, and the inherent variance arising from sequencing. Once these covariates are corrected for, we are able to identify ALS-specific signals in the data. Additionally, we find that the ATAC-seq data is able to predict ALS disease progression rates with similar accuracy to methods based on biomarkers and clinical status. These results suggest that iPSC-derived motor neurons recapitulate important disease-relevant epigenomic changes.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Cromatina/metabolismo , Cromatina/genética , Idoso , Epigenômica/métodos , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Progressão da Doença , Epigênese Genética
2.
Physiol Genomics ; 55(8): 324-337, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306406

RESUMO

The vascular endothelium constitutes the inner lining of the blood vessel, and malfunction and injuries of the endothelium can cause cardiovascular diseases as well as other diseases including stroke, tumor growth, and chronic kidney failure. Generation of effective sources to replace injured endothelial cells (ECs) could have significant clinical impact, and somatic cell sources like peripheral or cord blood cannot credibly supply enough endothelial cell progenitors for multitude of treatments. Pluripotent stem cells are a promising source for a reliable EC supply, which have the potential to restore tissue function and treat vascular diseases. We have developed methods to differentiate induced pluripotent stem cells (iPSCs) efficiently and robustly across multiple iPSC lines into nontissue-specific pan vascular ECs (iECs) with high purity. These iECs present with canonical endothelial cell markers and exhibit measures of endothelial cell functionality with the uptake of Dil fluorescent dye-labeled acetylated low-density lipoprotein (Dil-Ac-LDL) and tube formation. Using proteomic analysis, we revealed that the iECs are more proteomically similar to established human umbilical vein ECs (HUVECs) than to iPSCs. Posttranslational modifications (PTMs) were most shared between HUVECs and iECs, and potential targets for increasing the proteomic similarity of iECs to HUVECs were identified. Here we demonstrate an efficient robust method to differentiate iPSCs into functional ECs, and for the first time provide a comprehensive protein expression profile of iECs, which indicates their similarities with a widely used immortalized HUVECs, allowing for further mechanistic studies of EC development, signaling, and metabolism for future regenerative applications.NEW & NOTEWORTHY We have developed methods to differentiate induced pluripotent stem cells (iPSCs) across multiple iPSC lines into nontissue-specific pan vascular ECs (iECs) and demonstrated the proteomic similarity of these cells to a widely used endothelial cell line (HUVECs). We also identified posttranslational modifications and targets for increasing the proteomic similarity of iECs to HUVECs. In the future, iECs can be used to study EC development, signaling, and metabolism for future regenerative applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Cultivadas , Diferenciação Celular , Proteômica , Células Endoteliais da Veia Umbilical Humana , Endotélio Vascular
3.
Stem Cell Res ; 69: 103124, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209468

RESUMO

MEN1, an autosomal dominant disorder caused by mutations in the tumor suppressor gene MEN1, manifests with co-occurrence of multiple endocrine/neuroendocrine neoplasms. An iPSC line derived from an index patient carrying the mutation c.1273C>T (p.Arg465*) was edited using a single multiplex CRISPR/Cas approach to create an isogenic control non-mutated line and a homozygous double mutant line. These cell lines will be useful for elucidating subcellular MEN1 pathophysiology and for screening to identify potential MEN1 therapeutic targets.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Humanos , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Linhagem Celular , Homozigoto
4.
Neuron ; 111(8): 1191-1204.e5, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36764301

RESUMO

Using induced pluripotent stem cells (iPSCs) to understand the mechanisms of neurological disease holds great promise; however, there is a lack of well-curated lines from a large array of participants. Answer ALS has generated over 1,000 iPSC lines from control and amyotrophic lateral sclerosis (ALS) patients along with clinical and whole-genome sequencing data. The current report summarizes cell marker and gene expression in motor neuron cultures derived from 92 healthy control and 341 ALS participants using a 32-day differentiation protocol. This is the largest set of iPSCs to be differentiated into motor neurons, and characterization suggests that cell composition and sex are significant sources of variability that need to be carefully controlled for in future studies. These data are reported as a resource for the scientific community that will utilize Answer ALS data for disease modeling using a wider array of omics being made available for these samples.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Diferenciação Celular
5.
Sci Data ; 10(1): 24, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631473

RESUMO

The National Institute of Health (NIH) Library of integrated network-based cellular signatures (LINCS) program is premised on the generation of a publicly available data resource of cell-based biochemical responses or "signatures" to genetic or environmental perturbations. NeuroLINCS uses human inducible pluripotent stem cells (hiPSCs), derived from patients and healthy controls, and differentiated into motor neuron cell cultures. This multi-laboratory effort strives to establish i) robust multi-omic workflows for hiPSC and differentiated neuronal cultures, ii) public annotated data sets and iii) relevant and targetable biological pathways of spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Here, we focus on the proteomics and the quality of the developed workflow of hiPSC lines from 6 individuals, though epigenomics and transcriptomics data are also publicly available. Known and commonly used markers representing 73 proteins were reproducibly quantified with consistent expression levels across all hiPSC lines. Data quality assessments, data levels and metadata of all 6 genetically diverse human iPSCs analysed by DIA-MS are parsable and available as a high-quality resource to the public.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Proteoma , Humanos , Neurônios Motores , Proteoma/metabolismo , Proteômica
6.
iScience ; 24(11): 103221, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34746695

RESUMO

Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in C9ORF72. Using integrative computational methods combining all omics datasets, we identified novel and known dysregulated pathways. We used a C9ORF72 Drosophila model to distinguish pathways contributing to disease phenotypes from compensatory ones and confirmed alterations in some pathways in postmortem spinal cord tissue of patients with ALS. A different differentiation protocol was used to derive a separate set of C9ORF72 and control motor neurons. Many individual -omics differed by protocol, but some core dysregulated pathways were consistent. This strategy of analyzing patient-specific neurons provides disease-related outcomes with small numbers of heterogeneous lines and reduces variation from single-omics to elucidate network-based signatures.

7.
Handb Clin Neurol ; 181: 337-350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34238469

RESUMO

The hypothalamus, which is part of the brain of all vertebrate animals, is considered the link between the central nervous system (CNS) and (i) the endocrine system via the pituitary gland and (ii) with our organs via the autonomic nervous system. It synthesizes and releases neurohormones, which in turn stimulate or inhibit the secretion of other hormones within the CNS, and sends and receives signals to and from the peripheral nervous and endocrine systems. As the brain region responsible for energy homeostasis, the hypothalamus is the key regulator of thermoregulation, hunger and satiety, circadian rhythms, sleep and fatigue, memory and learning, arousal and reproductive cycling, blood pressure, and heart rate and thus orchestrates complex physiological responses in order to maintain metabolic homeostasis. These critical roles implicate the hypothalamus in neuroendocrine disorders such as obesity, diabetes, anorexia nervosa, bulimia, and others. In this chapter, we focus on the use of human-induced pluripotent stem cells (hiPSCs) and their differentiation into hypothalamic neurons in order to model neuroendocrine disorders such as extreme obesity in a dish. To do so, we discuss important steps of human hypothalamus development, neuroendocrine diseases related to the hypothalamus, multiple protocols to differentiate hiPSCs into hypothalamic neurons, and severe obesity modeling in vitro using hiPSCs-derived hypothalamic neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Hipotálamo , Neurogênese , Neurônios , Sistemas Neurossecretores
8.
Front Cell Infect Microbiol ; 11: 678482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34282405

RESUMO

COVID-19 pandemic has infected more than 154 million people worldwide and caused more than 3.2 million deaths. It is transmitted by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and affects the respiratory tract as well as extra-pulmonary systems, including the pancreas, that express the virus entry receptor, Angiotensin-Converting Enzyme 2 (ACE2) receptor. Importantly, the endocrine and exocrine pancreas, the latter composed of ductal and acinar cells, express high levels of ACE2, which correlates to impaired functionality characterized as acute pancreatitis observed in some cases presenting with COVID-19. Since acute pancreatitis is already one of the most frequent gastrointestinal causes of hospitalization in the U.S. and the majority of studies investigating the effects of SARS-CoV-2 on the pancreas are clinical and observational, we utilized human iPSC technology to investigate the potential deleterious effects of SARS-CoV-2 infection on iPSC-derived pancreatic cultures containing endocrine and exocrine cells. Interestingly, iPSC-derived pancreatic cultures allow SARS-CoV-2 entry and establish infection, thus perturbing their normal molecular and cellular phenotypes. The infection increased a key cytokine, CXCL12, known to be involved in inflammatory responses in the pancreas. Transcriptome analysis of infected pancreatic cultures confirmed that SARS-CoV-2 hijacks the ribosomal machinery in these cells. Notably, the SARS-CoV-2 infectivity of the pancreas was confirmed in post-mortem tissues from COVID-19 patients, which showed co-localization of SARS-CoV-2 in pancreatic endocrine and exocrine cells and increased the expression of some pancreatic ductal stress response genes. Thus, we demonstrate that SARS-CoV-2 can directly infect human iPSC-derived pancreatic cells with strong supporting evidence of presence of the virus in post-mortem pancreatic tissue of confirmed COVID-19 human cases. This novel model of iPSC-derived pancreatic cultures will open new avenues for the comprehension of the SARS-CoV-2 infection and potentially establish a platform for endocrine and exocrine pancreas-specific antiviral drug screening.


Assuntos
COVID-19 , Pancreatite , Doença Aguda , Humanos , Pâncreas , Pandemias , SARS-CoV-2
9.
Neuron ; 107(6): 1124-1140.e11, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32673563

RESUMO

Through mechanisms that remain poorly defined, defects in nucleocytoplasmic transport and accumulations of specific nuclear-pore-complex-associated proteins have been reported in multiple neurodegenerative diseases, including C9orf72 Amyotrophic Lateral Sclerosis and Frontotemporal Dementia (ALS/FTD). Using super-resolution structured illumination microscopy, we have explored the mechanism by which nucleoporins are altered in nuclei isolated from C9orf72 induced pluripotent stem-cell-derived neurons (iPSNs). Of the 23 nucleoporins evaluated, we observed a reduction in a subset of 8, including key components of the nuclear pore complex scaffold and the transmembrane nucleoporin POM121. Reduction in POM121 appears to initiate a decrease in the expression of seven additional nucleoporins, ultimately affecting the localization of Ran GTPase and subsequent cellular toxicity in C9orf72 iPSNs. Collectively, our data suggest that the expression of expanded C9orf72 ALS/FTD repeat RNA alone affects nuclear POM121 expression in the initiation of a pathological cascade affecting nucleoporin levels within neuronal nuclei and ultimately downstream neuronal survival.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Demência Frontotemporal/metabolismo , Glicoproteínas de Membrana/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Transporte Ativo do Núcleo Celular , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/metabolismo , Células Cultivadas , Demência Frontotemporal/genética , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicoproteínas de Membrana/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
10.
Mol Autism ; 11(1): 52, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560741

RESUMO

BACKGROUND: Fragile X syndrome (FXS), a neurodevelopmental disorder, is a leading monogenetic cause of intellectual disability and autism spectrum disorder. Notwithstanding the extensive studies using rodent and other pre-clinical models of FXS, which have provided detailed mechanistic insights into the pathophysiology of this disorder, it is only relatively recently that human stem cell-derived neurons have been employed as a model system to further our understanding of the pathophysiological events that may underlie FXS. Our study assesses the physiological properties of human pluripotent stem cell-derived cortical neurons lacking fragile X mental retardation protein (FMRP). METHODS: Electrophysiological whole-cell voltage- and current-clamp recordings were performed on two control and three FXS patient lines of human cortical neurons derived from induced pluripotent stem cells. In addition, we also describe the properties of an isogenic pair of lines in one of which FMR1 gene expression has been silenced. RESULTS: Neurons lacking FMRP displayed bursts of spontaneous action potential firing that were more frequent but shorter in duration compared to those recorded from neurons expressing FMRP. Inhibition of large conductance Ca2+-activated K+ currents and the persistent Na+ current in control neurons phenocopies action potential bursting observed in neurons lacking FMRP, while in neurons lacking FMRP pharmacological potentiation of voltage-dependent Na+ channels phenocopies action potential bursting observed in control neurons. Notwithstanding the changes in spontaneous action potential firing, we did not observe any differences in the intrinsic properties of neurons in any of the lines examined. Moreover, we did not detect any differences in the properties of miniature excitatory postsynaptic currents in any of the lines. CONCLUSIONS: Pharmacological manipulations can alter the action potential burst profiles in both control and FMRP-null human cortical neurons, making them appear like their genetic counterpart. Our studies indicate that FMRP targets that have been found in rodent models of FXS are also potential targets in a human-based model system, and we suggest potential mechanisms by which activity is altered.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Potenciais de Ação/efeitos dos fármacos , Adolescente , Animais , Diferenciação Celular/efeitos dos fármacos , Pré-Escolar , Humanos , Indóis/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Riluzol/farmacologia , Canais de Sódio/metabolismo , Veratridina/farmacologia , Adulto Jovem
11.
iScience ; 23(6): 101192, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32521508

RESUMO

Amyotrophic lateral sclerosis (ALS) is a disorder with immune alterations that augment disease severity. M2 macrophages benefit diabetic and nephrotic mice by suppressing the pro-inflammatory state. However, neither have M2 cells been investigated in ALS nor have human induced pluripotent stem cell (iPSC)-derived M2 cells been thoroughly studied for immunosuppressive potentials. Here, iPSCs of C9orf72 mutated or sporadic ALS patients were differentiated into M2 macrophages, which suppressed activation of pro-inflammatory M1 macrophages as well as proliferation of ALS CD4+CD25- Tc (Teffs). M2 cells converted ALS Teffs into CD4+CD25+Foxp3+ regulatory T cells (Tregs) and rescued Tregs of ALS patients from losing CD25 and Foxp3. Furthermore, Tregs induced or rescued by iPSC-derived M2 had strong suppressive functions. ALS iPSC-derived M2 cells including those with C9orf72 mutation had similar immunomodulatory activity as control iPSC-derived M2 cells. This study demonstrates that M2 cells differentiated from iPSCs of ALS patients are immunosuppressive, boost ALS Tregs, and may serve as a candidate for immune-cell-based therapy to mitigate inflammation in ALS.

12.
Stem Cell Res ; 46: 101851, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32450543

RESUMO

Cognitive decline is among the most feared aspects of ageing. We have generated induced pluripotent stem cells (iPSCs) from 24 people from the Lothian Birth Cohort 1936, whose cognitive ability was tested in childhood and in older age. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using non-integrating oriP/EBNA1 backbone plasmids expressing six iPSC reprogramming factors (OCT3/4 (POU5F1), SOX2, KLF4, L-Myc, shp53, Lin28, SV40LT). All lines demonstrated STR matched karyotype and pluripotency was validated by multiple methods. These iPSC lines are a valuable resource to study molecular mechanisms underlying individual differences in cognitive ageing and resilience to age-related neurodegenerative diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Reprogramação Celular , Cariótipo , Leucócitos Mononucleares , Plasmídeos
14.
Cell Stem Cell ; 22(5): 698-712.e9, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681516

RESUMO

The hypothalamus contains neurons that integrate hunger and satiety endocrine signals from the periphery and are implicated in the pathophysiology of obesity. The limited availability of human hypothalamic neurons hampers our understanding of obesity disease mechanisms. To address this, we generated human induced pluripotent stem cells (hiPSCs) from multiple normal body mass index (BMI; BMI ≤ 25) subjects and super-obese (OBS) donors (BMI ≥ 50) with polygenic coding variants in obesity-associated genes. We developed a method to reliably differentiate hiPSCs into hypothalamic-like neurons (iHTNs) capable of secreting orexigenic and anorexigenic neuropeptides. Transcriptomic profiling revealed that, although iHTNs maintain a fetal identity, they respond appropriately to metabolic hormones ghrelin and leptin. Notably, OBS iHTNs retained disease signatures and phenotypes of high BMI, exhibiting dysregulated respiratory function, ghrelin-leptin signaling, axonal guidance, glutamate receptors, and endoplasmic reticulum (ER) stress pathways. Thus, human iHTNs provide a powerful platform to study obesity and gene-environment interactions.


Assuntos
Grelina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Índice de Massa Corporal , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Feminino , Humanos , Masculino , Obesidade Mórbida/genética , Transdução de Sinais/genética
15.
Stem Cell Reports ; 10(4): 1222-1236, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29576540

RESUMO

Human stem cell-derived models of development and neurodegenerative diseases are challenged by cellular immaturity in vitro. Microengineered organ-on-chip (or Organ-Chip) systems are designed to emulate microvolume cytoarchitecture and enable co-culture of distinct cell types. Brain microvascular endothelial cells (BMECs) share common signaling pathways with neurons early in development, but their contribution to human neuronal maturation is largely unknown. To study this interaction and influence of microculture, we derived both spinal motor neurons and BMECs from human induced pluripotent stem cells and observed increased calcium transient function and Chip-specific gene expression in Organ-Chips compared with 96-well plates. Seeding BMECs in the Organ-Chip led to vascular-neural interaction and specific gene activation that further enhanced neuronal function and in vivo-like signatures. The results show that the vascular system has specific maturation effects on spinal cord neural tissue, and the use of Organ-Chips can move stem cell models closer to an in vivo condition.


Assuntos
Células Endoteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Dispositivos Lab-On-A-Chip , Neurônios Motores/citologia , Medula Espinal/citologia , Engenharia Tecidual/métodos , Encéfalo/irrigação sanguínea , Diferenciação Celular/genética , Sobrevivência Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Desenvolvimento Fetal/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Microvasos/citologia , Somatostatina/metabolismo
16.
Sci Rep ; 7(1): 14626, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116112

RESUMO

Creating a cDNA library for deep mRNA sequencing (mRNAseq) is generally done by random priming, creating multiple sequencing fragments along each transcript. A 3'-end-focused library approach cannot detect differential splicing, but has potentially higher throughput at a lower cost, along with the ability to improve quantification by using transcript molecule counting with unique molecular identifiers (UMI) that correct PCR bias. Here, we compare an implementation of such a 3'-digital gene expression (3'-DGE) approach with "conventional" random primed mRNAseq. Given our particular datasets on cultured human cardiomyocyte cell lines, we find that, while conventional mRNAseq detects ~15% more genes and needs ~500,000 fewer reads per sample for equivalent statistical power, the resulting differentially expressed genes, biological conclusions, and gene signatures are highly concordant between two techniques. We also find good quantitative agreement at the level of individual genes between two techniques for both read counts and fold changes between given conditions. We conclude that, for high-throughput applications, the potential cost savings associated with 3'-DGE approach are likely a reasonable tradeoff for modest reduction in sensitivity and inability to observe alternative splicing, and should enable many larger scale studies focusing on not only differential expression analysis, but also quantitative transcriptome profiling.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Atrofia Muscular Espinal/genética , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Estudos de Casos e Controles , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Estatísticos , Miócitos Cardíacos/citologia , RNA Mensageiro/análise
17.
Sci Rep ; 7(1): 10741, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878359

RESUMO

The fallopian tube epithelium (FTE) has been recognized as a site of origin of high-grade serous ovarian cancer (HGSC). However, the absence of relevant in vitro human models that can recapitulate tissue-specific architecture has hindered our understanding of FTE transformation and initiation of HGSC. Here, induced pluripotent stem cells (iPSCs) were used to establish a novel 3-dimensional (3D) human FTE organoid in vitro model containing the relevant cell types of the human fallopian tube as well as a luminal architecture that closely reflects the organization of fallopian tissues in vivo. Modulation of Wnt and BMP signaling directed iPSC differentiation into Müllerian cells and subsequent use of pro-Müllerian growth factors promoted FTE precursors. The expression and localization of Müllerian markers verified correct cellular differentiation. An innovative 3D growth platform, which enabled the FTE organoid to self-organize into a convoluted luminal structure, permitted matured differentiation to a FTE lineage. This powerful human-derived FTE organoid model can be used to study the earliest stages of HGSC development and to identify novel and specific biomarkers of early fallopian tube epithelial cell transformation.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Linhagem Celular , Células Epiteliais/metabolismo , Epitélio/metabolismo , Tubas Uterinas/citologia , Tubas Uterinas/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Modelos Biológicos , Mucosa/citologia , Mucosa/metabolismo
18.
Nat Commun ; 8(1): 219, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794470

RESUMO

Persistent exposure to man-made endocrine disrupting chemicals during fetal endocrine development may lead to disruption of metabolic homeostasis contributing to childhood obesity. Limited cellular platforms exist to test endocrine disrupting chemical-induced developmental abnormalities in human endocrine tissues. Here we use an human-induced pluripotent stem cell-based platform to demonstrate adverse impacts of obesogenic endocrine disrupting chemicals in the developing endocrine system. We delineate the effects upon physiological low-dose exposure to ubiquitous endocrine disrupting chemicals including, perfluoro-octanoic acid, tributyltin, and butylhydroxytoluene, in endocrine-active human-induced pluripotent stem cell-derived foregut epithelial cells and hypothalamic neurons. Endocrine disrupting chemicals induce endoplasmic reticulum stress, perturb NF-κB, and p53 signaling, and diminish mitochondrial respiratory gene expression, spare respiratory capacity, and ATP levels. As a result, normal production and secretion of appetite control hormones, PYY, α-MSH, and CART, are hampered. Blocking NF-κB rescues endocrine disrupting chemical-induced aberrant mitochondrial phenotypes and endocrine dysregulation, but not ER-stress and p53-phosphorylation changes.Harmful chemicals that disrupt the endocrine system and hormone regulation have been associated with obesity. Here the authors apply a human pluripotent stem cell-based platform to study the effects of such compounds on developing gut endocrine and neuroendocrine systems.


Assuntos
Disruptores Endócrinos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Trifosfato de Adenosina/metabolismo , Hormônios/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Mucosa Intestinal/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos
19.
Proc Natl Acad Sci U S A ; 114(8): E1509-E1518, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28193854

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by progressive motor neuron loss and caused by mutations in SMN1 (Survival Motor Neuron 1). The disease severity inversely correlates with the copy number of SMN2, a duplicated gene that is nearly identical to SMN1. We have delineated a mechanism of transcriptional regulation in the SMN2 locus. A previously uncharacterized long noncoding RNA (lncRNA), SMN-antisense 1 (SMN-AS1), represses SMN2 expression by recruiting the Polycomb Repressive Complex 2 (PRC2) to its locus. Chemically modified oligonucleotides that disrupt the interaction between SMN-AS1 and PRC2 inhibit the recruitment of PRC2 and increase SMN2 expression in primary neuronal cultures. Our approach comprises a gene-up-regulation technology that leverages interactions between lncRNA and PRC2. Our data provide proof-of-concept that this technology can be used to treat disease caused by epigenetic silencing of specific loci.


Assuntos
Atrofia Muscular Espinal/terapia , Oligonucleotídeos/genética , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Éxons/genética , Fibroblastos , Dosagem de Genes , Terapia Genética/métodos , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Mutação Puntual , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Ativação Transcricional/genética , Regulação para Cima
20.
Stem Cell Reports ; 8(2): 205-215, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28132888

RESUMO

Human induced pluripotent stem cells (iPSCs) can give rise to multiple cell types and hold great promise in regenerative medicine and disease-modeling applications. We have developed a reliable two-step protocol to generate human mammary-like organoids from iPSCs. Non-neural ectoderm-cell-containing spheres, referred to as mEBs, were first differentiated and enriched from iPSCs using MammoCult medium. Gene expression profile analysis suggested that mammary gland function-associated signaling pathways were hallmarks of 10-day differentiated mEBs. We then generated mammary-like organoids from 10-day mEBs using 3D floating mixed gel culture and a three-stage differentiation procedure. These organoids expressed common breast tissue, luminal, and basal markers, including estrogen receptor, and could be induced to produce milk protein. These results demonstrate that human iPSCs can be directed in vitro toward mammary lineage differentiation. Our findings provide an iPSC-based model for studying regulation of normal mammary cell fate and function as well as breast disease development.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Organoides , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular/genética , Ectoderma/citologia , Ectoderma/embriologia , Corpos Embrioides/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/citologia , Medicina Regenerativa , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...