Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-496751

RESUMO

The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In this study, we created 494 monoclonal antibodies from COVID-19-convalescent patients, and identified antibodies that exhibited comparable neutralizing ability to clinically used antibodies in the neutralization assay using pseudovirus and authentic virus including variants of concerns. These antibodies have different profiles against various mutations, which were confirmed by cell-based assay and cryo-electron microscopy. To prevent antibody-dependent enhancement, N297A modification was introduced, and showed a reduction of lung viral RNAs by therapeutic administration in a hamster model. In addition, an antibody cocktail consisting of three antibodies was also administered therapeutically to a macaque model, which resulted in reduced viral titers of swabs and lungs and reduced lung tissue damage scores. These results showed that our antibodies have sufficient antiviral activity as therapeutic candidates.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276432

RESUMO

AbstractImmunity to SARS-CoV-2 in COVID-19 cases has diversified due to complex combinations of exposure to vaccination and infection. Elucidating the drivers for upgrading neutralizing activity to SARS-CoV-2 in COVID-19 cases with pre-existing immunity will aid in understanding immunity to SARS-CoV-2 and improving COVID-19 booster vaccines with enhanced cross-protection against antigenically distinct variants. This study revealed that the magnitude and breadth of neutralization responses to SARS-CoV-2 infection in breakthrough infections are determined by upper respiratory viral load and vaccination-infection time interval, but not by the lineage of infecting viruses. Notably, the time interval, but not the viral load, may play a critical role in expanding the breadth of neutralization to SARS-CoV-2. This illustrates the importance of dosing interval optimization in addition to antigen design in the development of variant-proof booster vaccines. One-Sentence SummaryViral load and infection timing define the magnitude and breadth of SARS-CoV-2 neutralization after breakthrough infection.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-482147

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2 has spread in many countries, replacing the earlier Omicron subvariant BA.1 and other variants. Here, using a cell culture infection assay, we quantified the intrinsic sensitivity of BA.2 and BA.1 compared with other variants of concern, Alpha, Gamma, and Delta, to five approved-neutralizing antibodies and antiviral drugs. Our assay revealed the diverse sensitivities of these variants to antibodies, including the loss of response of both BA.1 and BA.2 to casirivimab and of BA.1 to imdevimab. In contrast, EIDD-1931 and nirmatrelvir showed a more conserved activities to these variants. The viral response profile combined with mathematical analysis estimated differences in antiviral effects among variants in the clinical concentrations. These analyses provide essential evidence that gives insight into variant emergences impact on choosing optimal drug treatment.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269587

RESUMO

BackgroundThe Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Japan in November 2021. This variant contains up to 36 mutations in the spike protein, the target of neutralizing antibodies, and can escape vaccine-induced immunity. The third booster vaccination campaign began with healthcare workers and high-risk groups. The safety and immunogenicity of third booster vaccination against Omicrons remain unknown. MethodsIn total, 272 healthcare workers were evaluated for their long-term safety and immunogenicity. Here, we established vaccine panels to evaluate the safety and immunogenicity against variants of concern (VOCs), including the Omicron variant, using a live virus microneutralization assay. FindingsTwo-dose vaccination induced robust anti-spike antibodies and neutralization titers (NTs) against the ancestral strain WK-521, whereas NTs in VOCs were significantly decreased. Within 93-247 days of the second vaccine dose, NTs against Omicron were completely abolished in up to 80% of individuals among the vaccine panels. The third booster vaccination induced a robust increase in anti-spike antibodies and NTs against the WK-521, Delta, and Omicron variants. The breadth of humoral immunity and cross-reactivity with Omicron increased. The cytokine signature and adverse event rate remained unchanged after three-dose vaccination. ConclusionsThe third vaccination dose is safe and effective against Omicron infection. FundingThis study was supported by grants from AMED (Grant Number JP21fk0108104 and JP21mk0102146).

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268481

RESUMO

BackgroundThe immune profile against SARS-CoV-2 has dramatically diversified due to a complex combination of exposure to vaccines and infection by various lineages/variants, likely generating a heterogeneity in protective immunity in a given population. To further complicate this, the Omicron variant, with numerous spike mutations, has emerged. These circumstances have created the need to assess the potential of immune evasion by the Omicron in individuals with various immune histories. MethodsThe neutralization susceptibility of the variants including the Omicron and their ancestor was comparably assessed using a panel of plasma/serum derived from individuals with divergent immune histories. Blood samples were collected from either mRNA vaccinees or from those who suffered from breakthrough infections by the Alpha/Delta with multiple time intervals following vaccination. FindingsThe Omicron was highly resistant to neutralization in fully vaccinated individuals without a history of breakthrough infections. In contrast, robust cross-neutralization against the Omicron were induced in vaccinees that experienced breakthrough infections. The time interval between vaccination and infection, rather than the variant types of infection, was significantly correlated with the magnitude and potency of Omicron-neutralizing antibodies. ConclusionsImmune histories with breakthrough infections can overcome the resistance to infection by the Omicron, with the vaccination-infection interval being the key determinant of the magnitude and breadth of neutralization. The diverse exposure history in each individual warrants a tailored and cautious approach to understanding population immunity against the Omicron and future variants. FundingThis study was supported by grants from the Japan Agency for Medical Research and Development (AMED).

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474091

RESUMO

SARS-CoV-2 Beta and Omicron variants have multiple mutations in the receptor-binding domain (RBD) allowing antibody evasion. Despite the resistance to circulating antibodies in those who received two doses of mRNA vaccine, the third dose prominently recalls cross-neutralizing antibodies with expanded breadth to these variants. Herein, we longitudinally profiled the cellular composition of persistent memory B-cell subsets and their antibody reactivity against these variants following the second vaccine dose. The vaccination elicited a memory B-cell subset with resting phenotype that dominated the other subsets at 4.9 months. Notably, most of the resting memory subset retained the ability to bind the Beta variant, and the memory-derived antibodies cross-neutralized the Beta and Omicron variants at frequencies of 59% and 29%, respectively. The preservation of cross-neutralizing antibody repertoires in the durable memory B-cell subset likely contributes to the prominent recall of cross-neutralizing antibodies following the third dose of the vaccine. One Sentence SummaryFully vaccinated individuals preserve cross-neutralizing memory B-cells against the SARS-CoV-2 Omicron variant.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260728

RESUMO

BACKGROUNDTo fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), mass vaccination has begun in many countries. To investigate the usefulness of a serological assay to predict vaccine efficacy, we analyzed the levels of IgG, IgM, and IgA against the receptor binding domain (RBD) of SARS-CoV-2 in the sera from BNT162b2 vaccinated individuals in Japan. METHODSThis study included 219 individuals who received two doses of BNT162b2. The levels of IgG, IgM, and IgA against RBD were measured by enzyme-linked immunosorbent assay before and after the first and second vaccination, respectively. The relationship between antibody levels and several factors including age, gender, and hypertension were analyzed. Virus-neutralizing activity in sera was measured to determine the correlation with the levels of antibodies. A chemiluminescent enzyme immunoassay (CLEIA) method to measure IgG against RBD was developed and validated for the clinical setting. RESULTSThe levels of all antibody isotypes were increased after vaccination. Among them, RBD-IgG was dramatically increased after the second vaccination. The IgG levels in females were significantly higher than in males. There was a negative correlation between age and IgG levels in males. The IgG levels significantly correlated with the neutralizing activity. The CLEIA assay measuring IgG against RBD showed a reliable performance and a high correlation with neutralizing activity. CONCLUSIONSMonitoring of IgG against RBD is a powerful tool to predict the efficacy of SARS-CoV-2 vaccination and provides useful information in considering a personalized vaccination strategy for COVID-19.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-407510

RESUMO

Serological tests for detection of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in blood are expected to identify individuals who have acquired immunity against SARS-CoV-2 and indication of seroprevalence of SARS-CoV-2 infection. Many serological tests have been developed to detect antibodies against SARS-CoV-2. However, these tests have considerable variations in their specificity and sensitivity, and whether they can predict levels of neutralizing activity is yet to be determined. This study aimed to investigate the kinetics and neutralizing activity of various antigen-specific antibody isotypes against SARS-CoV-2 in serum of coronavirus disease 2019 (COVID-19) patients confirmed via polymerase chain reaction test. We developed IgG, IgM and IgA measurement assays for each antigen, including receptor-binding domain (RBD) of spike (S) protein, S1 domain, full length S protein, S trimer and nucleocapsid (N) domain, based on enzyme-linked immunosorbent assay. The assays of the S protein for all isotypes showed high specificity, while the assays for all isotypes against N protein showed lower specificity. The sensitivity of all antigen-specific antibody isotypes depended on the timing of the serum collection and all of them, except for IgM against N protein, reached more than 90% at 15-21 days post-symptom onset. The best correlation with virus neutralizing activity was found for IgG against RBD (RBD-IgG), and levels of RBD-IgG in sera from four severe COVID-19 patients increased concordantly with neutralizing activity. Our results provide valuable information regarding the selection of serological test for seroprevalence and vaccine evaluation studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA