RESUMO
Fish by-products are excellent sources of collagen. Acid-soluble collagen (ASC) derived from a mixed by-product of different fish species was hydrolyzed to obtain peptide fractions and evaluate their biological and functional activities. All fractions obtained (F1: ≥30, F2: 10-30, F3: 5-10, F4: 1-5, and F5: ≤1kDa) exhibited antioxidant activity at concentrations of 5, 10, and 15 mg/mL. However, F5 registered the highest reducing power (absorbance 0.366) and hydroxyl-radical-scavenging activity (91%) at 15 mg/mL; whereas the highest DPPH scavenging activity (81%) was also detected in F5 at 5 mg/mL. The solubility of F1, F2, and F3 was ≥ 95% at pH 7. The highest foaming capacity (78%), foaming stability (60%), and emulsion stability index (42 min) were registered for F1. However, the highest emulsifying activity index (130 m2/g) was for F3. These results place collagen obtained from a mixed by-product of different fish species as a potential biotechnological alternative for the industry.
Assuntos
Antioxidantes/farmacologia , Colágeno/química , Produtos Pesqueiros , Proteínas de Peixes/química , Peptídeos/química , Peptídeos/farmacologia , Aminoácidos/análise , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Emulsificantes/química , Proteínas de Peixes/farmacologia , Sequestradores de Radicais Livres/química , Concentração de Íons de Hidrogênio , Hidrólise , Radical Hidroxila/química , Hidrolisados de Proteína/química , SolubilidadeRESUMO
Freezing conditions affect fish muscle protein functionality due to its denaturation/aggregation. However, jumbo squid (Dosidicus gigas) muscle protein functionality remains stable even after freezing, probably due to the presence of low-molecular-mass compounds (LMMC) as cryoprotectants. Thus, water-soluble LMMC (<1 kDa) fraction obtained from jumbo squid muscle was evaluated by Fourier transform infrared spectrometry. From its spectra, total carbohydrates, free monosaccharides, free amino acids and ammonium chloride were determined. Cryoprotectant capacity and protein cryostability conferred by LMMC were investigated by differential scanning calorimetry. Fraction partial characterization showed that the main components are free amino acids (18.84 mg/g), carbohydrates (67.1 µg/mg) such as monosaccharides (51.1 µg/mg of glucose, fucose and arabinose in total) and ammonium chloride (220.4 µg/mg). Arginine, sarcosine and taurine were the main amino acids in the fraction. LMMC, at the mass fraction present in jumbo squid muscle, lowered the water freezing point to -1.2 °C, inhibiting recrystallization at 0.66 °C. Significant myofibrillar protein stabilization by LMMC was observed after a freeze-thaw cycle compared to control (muscle after extraction of LMMC), proving the effectiveness on jumbo squid protein muscle cryo- stability. Osmolytes in LMMC fraction inhibited protein denaturation/aggregation and ice recrystallization, maintaining the muscle structure stable under freezing conditions. LMMC conferred protein cryostability even at the very low mass fraction in the muscle.