Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(4): e23489, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38407813

RESUMO

Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating ß-Catenin. Silencing Wnt1 impairs mechanically induced ß-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/ß-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Animais , Feminino , Camundongos , beta Catenina/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteoblastos , RNA Interferente Pequeno , Via de Sinalização Wnt , Ativador de Plasminogênio Tecidual/metabolismo
2.
Bone Res ; 12(1): 12, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395992

RESUMO

Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1Col2a1Cre), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.


Assuntos
Cartilagem Articular , Osteoartrite , Osteófito , Animais , Humanos , Camundongos , Cartilagem Articular/patologia , Condrócitos , Canais Iônicos/genética , Osteoartrite/genética , Osteogênese/genética , Osteófito/metabolismo
3.
Cell Mol Biol Lett ; 28(1): 76, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777764

RESUMO

During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.


Assuntos
Osteoartrite , Osteoporose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/fisiologia , Osteoartrite/metabolismo , Diferenciação Celular , Senescência Celular
4.
Bone ; 172: 116781, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37100360

RESUMO

External mechanostimulation applied by whole-body low-magnitude high-frequency vibration (LMHFV) was demonstrated to cause no or negative effects on fracture healing in estrogen-competent rodents, while in ovariectomized (OVX), estrogen-deficient rodents bone formation after fracture was improved. Using mice with an osteoblast-specific deletion of the estrogen receptor α (ERα), we demonstrated that ERα signaling in osteoblasts is required for both the anabolic and catabolic effects of LMHFV during bone fracture healing in OVX and non-OVX mice, respectively. Because the vibration effects mediated by ERα were strictly dependent on the estrogen status, we hypothesized different roles of ligand-dependent and -independent ERα signaling. To investigate this assumption in the present study, we used mice with a deletion of the C-terminal activation function (AF) domain-2 of the ERα receptor, which mediated ligand-dependent ERα signaling (ERαAF-20). OVX and non-OVX ERαAF-20 animals were subjected to femur osteotomy followed by vibration treatment. We revealed that estrogen-competent mice lacking the AF-2 domain were protected from LMHFV-induced impaired bone regeneration, while the anabolic effects of vibration in OVX mice were not affected by the AF-2 knockout. RNA sequencing further showed that genes involved in Hippo/Yap1-Taz and Wnt signaling were significantly downregulated upon LMHFV in the presence of estrogen in vitro. In conclusion, we demonstrated that the AF-2 domain is crucial for the negative effects of vibration during bone fracture healing in estrogen-competent mice suggesting that the osteoanabolic effects of vibration are rather mediated by ligand-independent ERα signaling.


Assuntos
Receptor alfa de Estrogênio , Consolidação da Fratura , Camundongos , Animais , Consolidação da Fratura/fisiologia , Receptor alfa de Estrogênio/genética , Furilfuramida , Receptores de Estrogênio , Mecanotransdução Celular , Ligantes , Estrogênios/fisiologia
5.
J Bone Miner Res ; 38(5): 749-764, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36891752

RESUMO

Despite considerable improvement in fracture care, 5%-10% of all fractures still heal poorly or result in nonunion formation. Therefore, there is an urgent need to identify new molecules that can be used to improve bone fracture healing. One activator of the Wnt-signaling cascade, Wnt1, has recently gained attention for its intense osteoanabolic effect on the intact skeleton. The aim of the present study was to investigate whether Wnt1 might be a promising molecule to accelerate fracture healing both in skeletally healthy and osteoporotic mice that display a diminished healing capacity. Transgenic mice for a temporary induction of Wnt1 specifically in osteoblasts (Wnt1-tg) were subjected to femur osteotomy. Non-ovariectomized and ovariectomized Wnt1-tg mice displayed significantly accelerated fracture healing based on a strong increase in bone formation in the fracture callus. Transcriptome profiling revealed that Hippo/yes1-associated transcriptional regulator (YAP)-signaling and bone morphogenetic protein (BMP) signaling pathways were highly enriched in the fracture callus of Wnt1-tg animals. Immunohistochemical staining confirmed increased activation of YAP1 and expression of BMP2 in osteoblasts in the fracture callus. Therefore, our data indicate that Wnt1 boosts bone formation during fracture healing via YAP/BMP signaling both under healthy and osteoporotic conditions. To further test a potential translational application of Wnt1, we applied recombinant Wnt1 embedded into a collagen gel during critical-size bone-defect repair. Mice treated with Wnt1 displayed increased bone regeneration compared to control mice accompanied by increased YAP1/BMP2 expression in the defect area. These findings are of high clinical relevance because they indicate that Wnt1 could be used as a new therapeutic agent to treat orthopedic complications in the clinic. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Camundongos , Animais , Consolidação da Fratura/fisiologia , Osteogênese/fisiologia , Fraturas Ósseas/metabolismo , Calo Ósseo/metabolismo , Camundongos Transgênicos , Via de Sinalização Wnt
6.
Front Endocrinol (Lausanne) ; 13: 1016057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246887

RESUMO

In recent years, evidence has accumulated that the complement system, an integral part of innate immunity, may be involved in the regulation of bone homeostasis as well as inflammatory bone loss, for example, in rheumatoid arthritis and periodontitis. Complement may also contribute to osteoporosis development, but investigation of the mechanism is limited. Using mice with a conditional deletion of the complement anaphylatoxin receptor C5aR1, we here demonstrated that C5aR1 in osteoblasts (C5aR1 Runx2-Cre mice) or osteoclasts (C5aR1 LysM-Cre mice) did not affect physiological bone turnover or age-related bone loss in either sex, as confirmed by micro-computed tomography, histomorphometry, and biomechanical analyses of the bone and by the measurement of bone turnover markers in the blood serum. When female mice were subjected to ovariectomy (OVX), a common model for postmenopausal osteoporosis, significant bone loss was induced in C5aR1 fl/fl and C5aR1 LysM-Cre mice, as demonstrated by a significantly reduced bone volume fraction, trabecular number and thickness as well as an increased trabecular separation in the trabecular bone compartment. Confirming this, the osteoclast number and the receptor activator of nuclear factor k-B (RANK) ligand (RANKL) serum level were significantly elevated in these mouse lines. By contrast, C5aR1 Runx2-Cre mice were protected from bone loss after OVX and the serum RANKL concentration was not increased after OVX. These data suggested that bone cell-specific C5aR1 may be redundant in bone homeostasis regulation under physiological conditions. However, C5aR1 on osteoblasts was crucial for the induction of bone resorption under osteoporotic conditions by stimulating RANKL release, whereas C5aR1 on osteoclasts did not regulate OVX-induced bone loss. Therefore, our results implicate C5aR1 on osteoblasts as a potential target for treating postmenopausal osteoporosis.


Assuntos
Osteoporose Pós-Menopausa , Osteoporose , Animais , Feminino , Camundongos , Anafilatoxinas , Subunidade alfa 1 de Fator de Ligação ao Core , Ligantes , Osteoblastos , Osteogênese , Osteoporose/genética , Osteoporose Pós-Menopausa/genética , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento , Microtomografia por Raio-X
7.
Front Microbiol ; 13: 937466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935196

RESUMO

Chronic staphylococcal osteomyelitis can persist for long time periods causing bone destruction. The ability of Staphylococcus aureus to develop chronic infections is linked to its capacity to invade and replicate within osteoblasts and osteocytes and to switch to a dormant phenotype called small colony variants. Recently, osteocytes were described as a main reservoir for this pathogen in bone tissue. However, the mechanisms involved in the persistence of S. aureus within these cells are still unknown. Here, we investigated the interaction between S. aureus and osteoblasts or osteocytes during infection. While osteoblasts are able to induce a strong antimicrobial response and eliminate intracellular S. aureus, osteocytes trigger signals to recruit immune cells and enhance inflammation but fail an efficient antimicrobial activity to clear the bacterial infection. Moreover, we found that extracellular signals from osteocytes enhance intracellular bacterial clearance by osteoblasts. Even though both cell types express Toll-like receptor (TLR) 2, the main TLR responsible for S. aureus detection, only osteoblasts were able to increase TLR2 expression after infection. Additionally, proteomic analysis indicates that reduced intracellular bacterial killing activity in osteocytes is related to low antimicrobial peptide expression. Nevertheless, high levels of lipid mediators and cytokines were secreted by osteocytes, suggesting that they can contribute to inflammation. Taken together, our results demonstrate that osteocytes contribute to severe inflammation observed in osteomyelitis and represent the main niche for S. aureus persistence due to their poor capacity for intracellular antimicrobial response.

8.
Dis Model Mech ; 15(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394023

RESUMO

Osteoporosis is a systemic metabolic skeletal disease characterized by low bone mass and strength associated with fragility fractures. Oxidative stress, which results from elevated intracellular reactive oxygen species (ROS) and arises in the aging organism, is considered one of the critical factors contributing to osteoporosis. Mitochondrial (mt)ROS, as the superoxide anion (O2-) generated during mitochondrial respiration, are eliminated in the young organism by antioxidant defense mechanisms, including superoxide dismutase 2 (SOD2), the expression and activity of which are decreased in aging mesenchymal progenitor cells, accompanied by increased mtROS production. Using a mouse model of osteoblast lineage cells with Sod2 deficiency, we observed significant bone loss in trabecular and cortical bones accompanied by decreased osteoblast activity, increased adipocyte accumulation in the bone marrow and augmented osteoclast activity, suggestive of altered mesenchymal progenitor cell differentiation and osteoclastogenesis. Furthermore, osteoblast senescence was increased. To date, there are only a few studies suggesting a causal association between mtROS and cellular senescence in tissue in vivo. Targeting SOD2 to improve redox homeostasis could represent a potential therapeutic strategy for maintaining bone health during aging.


Assuntos
Osteoblastos , Osteoporose , Superóxido Dismutase , Animais , Camundongos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
9.
Cells ; 11(7)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406671

RESUMO

Accumulation of senescent chondrocytes is thought to drive inflammatory processes and subsequent cartilage degeneration in age-related as well as posttraumatic osteoarthritis (OA). However, the underlying mechanisms of senescence and consequences on cartilage homeostasis are not completely understood so far. Therefore, suitable in vitro models are needed to study chondrocyte senescence. In this study, we established and evaluated a doxorubicin (Doxo)-based model of stress-induced premature senescence (SIPS) in human articular chondrocytes (hAC). Cellular senescence was determined by the investigation of various senescence associated (SA) hallmarks including ß-galactosidase activity, expression of p16, p21, and SA secretory phenotype (SASP) markers (IL-6, IL-8, MMP-13), the presence of urokinase-type plasminogen activator receptor (uPAR), and cell cycle arrest. After seven days, Doxo-treated hAC displayed a SIPS-like phenotype, characterized by excessive secretion of SASP factors, enhanced uPAR-positivity, decreased proliferation rate, and increased ß-galactosidase activity. This phenotype was proven to be stable seven days after the removal of Doxo. Moreover, Doxo-treated hAC exhibited increased granularity and flattened or fibroblast-like morphology. Further analysis implies that Doxo-mediated SIPS was driven by oxidative stress as demonstrated by increased ROS levels and NO release. Overall, we provide novel insights into chondrocyte senescence and present a suitable in vitro model for further studies.


Assuntos
Condrócitos , Osteoartrite , Senescência Celular/genética , Condrócitos/metabolismo , Doxorrubicina/farmacologia , Humanos , Osteoartrite/metabolismo , beta-Galactosidase/metabolismo
10.
Endocrine ; 75(1): 266-275, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34529238

RESUMO

PURPOSE: Endochondral ossification, which involves transdifferentiation of chondrocytes into osteoblasts, is an important process involved in the development and postnatal growth of most vertebrate bones as well as in bone fracture healing. To study the basic molecular mechanisms of this process, a robust and easy-to-use in vitro model is desirable. Therefore, we aimed to develop a standardized in vitro assay for the transdifferentiation of chondrogenic cells towards the osteogenic lineage. METHODS: Murine chondrogenic ATDC5 cells were differentiated into the chondrogenic lineage for seven days and subsequently differentiated towards the osteogenic direction. Gene expression analysis of pluripotency, as well as chondrogenic and osteogenic markers, cell-matrix staining, and immunofluorescent staining, were performed to assess the differentiation. In addition, the effects of Wnt3a and lipopolysaccharides (LPS) on the transdifferentiation were tested by their addition to the osteogenic differentiation medium. RESULTS: Following osteogenic differentiation, chondrogenically pe-differentiated cells displayed the expression of pluripotency and osteogenic marker genes as well as alkaline phosphatase activity and a mineralized matrix. Co-expression of Col2a1 and Col1a1 after one day of osteogenic differentiation indicated that osteogenic cells had differentiated from chondrogenic cells. Wnt3a increased and LPS decreased transdifferentiation towards the osteogenic lineage. CONCLUSION: We successfully established a rapid, standardized in vitro assay for the transdifferentiation of chondrogenic cells into osteogenic cells, which is suitable for testing the effects of different compounds on this cellular process.


Assuntos
Condrócitos , Osteogênese , Animais , Diferenciação Celular , Transdiferenciação Celular , Células Cultivadas , Condrócitos/metabolismo , Condrogênese/genética , Camundongos , Osteoblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...