Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38794120

RESUMO

To develop peptide drugs targeting integrin receptors, synthetic peptide ligands endowed with well-defined selective binding motifs are necessary. The snake venom KTS-containing disintegrins, which selectively block collagen α1ß1 integrin, were used as lead compounds for the synthesis and structure-activity relationship of a series of linear peptides containing the KTS-pharmacophore and alternating natural amino acids and 3-aminobenzoic acid (MABA). To ensure a better stiffness and metabolic stability, one, two and three MABA residues, were introduced around the KTS pharmacophore motif. Molecular dynamics simulations determined that the solution conformation of MABA peptide 4 is more compact, underwent larger conformational changes until convergence, and spent most of the time in a single cluster. The peptides' binding affinity has been characterized by an enzyme linked immunosorbent assay in which the most potent peptide 4 inhibited with IC50 of 324 ± 8 µM and 550 ± 45 µM the binding of GST-α1-A domain to collagen IV fragment CB3, and the cell adhesion to collagen IV using α1-overexpressor cells, respectively. Docking studies and MM-GBSA calculations confirmed that peptide 4 binds a smaller region of the integrin near the collagen-binding site and penetrated deeper into the binding site near Trp1. Peptide 4 inhibited tube formation by endothelial cell migration in the Matrigel angiogenesis in vitro assay. Peptide 4 was acutely tolerated by mice, showed stability in human serum, decreased tumor volume and angiogenesis, and significantly increased the survival of mice injected with B16 melanoma cells. These findings propose that MABA-peptide 4 can further serve as an α1ß1-integrin antagonist lead compound for further drug optimization in angiogenesis and cancer therapy.

2.
Comput Struct Biotechnol J ; 23: 1244-1259, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38550974

RESUMO

Understanding protein-protein interactions (PPIs) at the molecular level may lead to innovations in medicine and biochemistry. The assumption that there are certain "hot spots" on protein surfaces that mediate their interactions with other proteins has led to a search for specific sequences involved in protein-protein contacts. In this work, we analyze sequential amino acid motifs, both at the single motif and at the motif-motif level, across a large and diverse dataset of biologically relevant protein-protein interfaces retrieved from the PDB, comparing their presence at interfaces and surfaces in a statistically rigorous manner. At the single motif level, our results indicate statistically significant over-presence of hydrophobic and in particular aromatic residues and under-presence of charged residues at protein-protein interfaces. Certain PPI-mediating motifs reported in the literature (e.g., the Tyrosine-based Motif YxxΦ and the PDZ-Binding Motif X-S/T-X-V/I) were confirmed to have a significant presence at interfaces. In addition, multiple PPI-mediating motifs were reported in the ELM database and from those present in our dataset, half were confirmed to have a statistically significant presence at interfaces whereas others were not. At the single residue, motif-motif level, Cysteine-Cysteine contacts were found to be the most abundant ones followed by interactions involving aromatic/hydrophobic residues. Top ranking, longer motif-motif pairs show predominance of Leucine and aromatic residues. Finally, preliminary energy calculations (using the MM/GBSA procedure) indicate a partial correlation between the probability of motifs-pair to be a part of a protein-protein interface and the strength of the interactions between the motifs. In conclusion, this study points to specific characteristics of motifs that have a higher probability to mediate protein-protein interactions. Prominent motifs identified in this study may be used in the future as possible components in protein engineering.

3.
Front Plant Sci ; 14: 1161702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229130

RESUMO

Introduction: The eons-long co-evolvement of plants and bacteria led to a plethora of interactions between the two kingdoms, in which bacterial pathogenicity is counteracted by plant-derived antimicrobial defense molecules. In return, efflux pumps (EP) form part of the resistance mechanism employed by bacteria to permit their survival in this hostile chemical environment. In this work we study the effect of combinations of efflux pump inhibitors (EPIs) and plant-derived phytochemicals on bacterial activity using Pectobacteriun brasiliense 1692 (Pb1692) as a model system. Methods: We measured the minimal inhibitory concentration (MIC) of two phytochemicals, phloretin (Pht) and naringenin (Nar), and of one common antibiotic ciprofloxacin (Cip), either alone or in combinations with two known inhibitors of the AcrB EP of Escherichia coli, a close homolog of the AcrAB-TolC EP of Pb1692. In addition, we also measured the expression of genes encoding for the EP, under similar conditions. Results: Using the FICI equation, we observed synergism between the EPIs and the phytochemicals, but not between the EPIs and the antibiotic, suggesting that EP inhibition potentiated the antimicrobial activity of the plant derived compounds, but not of Cip. Docking simulations were successfully used to rationalize these experimental results. Discussion: Our findings suggest that AcrAB-TolC plays an important role in survival and fitness of Pb1692 in the plant environment and that its inhibition is a viable strategy for controlling bacterial pathogenicity.

4.
Mol Inform ; 42(4): e2200186, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36617991

RESUMO

QSAR models are widely and successfully used in many research areas. The success of such models highly depends on molecular descriptors typically classified as 1D, 2D, 3D, or 4D. While 3D information is likely important, e. g., for modeling ligand-protein binding, previous comparisons between the performances of 2D and 3D descriptors were inconclusive. Yet in such comparisons the modeled ligands were not necessarily represented by their bioactive conformations. With this in mind, we mined the PDB for sets of protein-ligand complexes sharing the same protein for which uniform activity data were reported. The results, totaling 461 structures spread across six series were compiled into a carefully curated, first of its kind dataset in which each ligand is represented by its bioactive conformation. Next, each set was characterized by 2D, 3D and 2D + 3D descriptors and modeled using three machine learning algorithms, namely, k-Nearest Neighbors, Random Forest and Lasso Regression. Models' performances were evaluated on external test sets derived from the parent datasets either randomly or in a rational manner. We found that many more significant models were obtained when combining 2D and 3D descriptors. We attribute these improvements to the ability of 2D and 3D descriptors to code for different, yet complementary molecular properties.


Assuntos
Proteínas , Relação Quantitativa Estrutura-Atividade , Ligantes , Conformação Molecular , Algoritmos
5.
J Chem Inf Model ; 63(1): 87-100, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36512692

RESUMO

Glass fragments found in crime scenes may constitute important forensic evidence when properly analyzed, for example, to determine their origin. This analysis could be greatly helped by having a large and diverse database of glass fragments and by using it for constructing reliable machine learning (ML)-based glass classification models. Ideally, the samples that make up this database should be analyzed by a single accurate and standardized analytical technique. However, due to differences in equipment across laboratories, this is not feasible. With this in mind, in this work, we investigated if and how measurement performed at different laboratories on the same set of glass fragments could be combined in the context of ML. First, we demonstrated that elemental analysis methods such as particle-induced X-ray emission (PIXE), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM-EDS), particle-induced Gamma-ray emission (PIGE), instrumental neutron activation analysis (INAA), and prompt Gamma-ray neutron activation analysis (PGAA) could each produce lab-specific ML-based classification models. Next, we determined rules for the successful combinations of data from different laboratories and techniques and demonstrated that when followed, they give rise to improved models, and conversely, poor combinations will lead to poor-performing models. Thus, the combination of PIXE and LA-ICP-MS improves the performances by ∼10-15%, while combining PGAA with other techniques provides poorer performances in comparison with the lab-specific models. Finally, we demonstrated that the poor performances of the SEM-EDS technique, still in use by law enforcement agencies, could be greatly improved by replacing SEM-EDS measurements for Fe and Ca by PIXE measurements for these elements. These findings suggest a process whereby forensic laboratories using different elemental analysis techniques could upload their data into a unified database and get reliable classification based on lab-agnostic models. This in turn brings us closer to a more exhaustive extraction of information from glass fragment evidence and furthermore may form the basis for international-wide collaboration between law enforcement agencies.


Assuntos
Vidro
6.
Mol Inform ; 41(11): e2200034, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35790469

RESUMO

Docking-based virtual screening (VS) is a common starting point in many drug discovery projects. While ligand-based approaches may sometimes provide better results, the advantage of docking lies in its ability to provide reliable ligand binding modes and approximated binding free energies, two factors that are important for hit selection and optimization. Most docking programs were developed to be as general as possible and consequently their performances on specific targets may be sub-optimal. With this in mind, in this work we present a method for the development of target-specific scoring functions using our recently reported Enrichment Optimization Algorithm (EOA). EOA derives QSAR models in the form of multiple linear regression (MLR) equations by optimizing an enrichment-like metric. Since EOA requires target-specific active and inactive (or decoy) compounds, we retrieved such data for six targets from the DUD-E database, and used them to re-derive the weights associated with the components that make up GOLD's ChemPLP scoring function yielding target-specific, modified functions. We then used the original ChemPLP function in small-scale VS experiments on the six targets and subsequently rescored the resulting poses with the modified functions. In addition, we used the modified functions for compounds re-docking. We found that in many although not all cases, either rescoring the original ChemPLP poses or repeating the entire docking process with the modified functions, yielded better results in terms of AUC and EF1% , two metrics, common for the evaluation of VS performances. While work on additional datasets and docking tools is clearly required, we propose that the results obtained thus far hint to the potential benefits in using EOA-based optimization for the derivation of target-specific functions in the context of virtual screening. To this end, we discuss the downsides of the methods and how it could be improved.


Assuntos
Algoritmos , Proteínas , Ligantes , Sítios de Ligação , Ligação Proteica , Proteínas/química
7.
Forensic Sci Int ; 333: 111216, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35220157

RESUMO

The International Atomic Energy Agency (IAEA) has coordinated a research project titled "Enhancing Nuclear Analytical Techniques to Meet the Needs of Forensics Sciences" (CRP F11021) with the aim of empowering accelerator and reactor based techniques for applications in forensic sciences. One of the key topics of this project was the analysis and classification of forensic glass specimens using Ion Beam Analysis (IBA) techniques and in particular, Particle Induced X-ray Emission (PIXE). To this end, glass fragments from car windows from different car models and manufacturers provided by the Israeli police force were subjected to PIXE measurements at three laboratories to determine their elemental compositions and possible glass corrosion. Major and trace elements were measured and given as an input to machine learning (ML) algorithms in order to develop classification models to determine the origin of the glass samples. First, we have developed ML models based on the results obtained at each lab. These models successfully classified glass fragments into different car models with an accuracy> 80% on external test sets. Next, we demonstrated that following an appropriate pre-processing step, results from different labs could be combined into a single unified database for the derivation of a classification model. This model demonstrates good performances that matches or surpasses the performances of models derived from the individual labs. This finding paves the way towards establishing an international database that is composed of measurements from various PIXE labs. We believe that using this methodology of combining various sources of measurements will improve models' performances and generality and will make the models accessible to law enforcement agencies around the world.

8.
Mol Inform ; 41(1): e2000173, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32985106

RESUMO

The ever-growing data acquisition speed represents a challenge for data analysis in materials sciences in general and the field of solar cells in particular. This is because many unsupervised and supervised learning algorithms require model re-derivation when presented with new samples which are markedly different from those used for model construction. Dynamic segmentation addresses this problem by continuously updating the clusters structure, for example, by splitting old clusters or opening new ones, as new samples are presented. In this work we present the application of a Dynamic Classification Unit (DCU) to the study of the photovoltaic space. Using a database of 1165 metal oxide-based solar cells, constructed from five libraries, we demonstrate that the DCU algorithm, when initiated with only 10 % of the database, correctly classified 82 % of the remaining, 90 % samples. At the same time the algorithm unveiled the presence of interesting trends, outliers and compositional activity cliffs. These abilities may prove useful for the analysis of the photovoltaic space and in turn may contribute to the design of solar cells with improved properties. We suggest that DCU and other dynamic clustering methods will find wide applications in the rapidly developing field of materials informatics.


Assuntos
Algoritmos , Ciência dos Materiais , Análise por Conglomerados , Bases de Dados Factuais , Óxidos/química
9.
mBio ; 12(6): e0260221, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34844425

RESUMO

In the parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, all mRNAs are trans-spliced to generate a common 5' exon derived from the spliced leader (SL) RNA. Perturbations of protein translocation across the endoplasmic reticulum (ER) induce the spliced leader RNA silencing (SLS) pathway. SLS activation is mediated by a serine-threonine kinase, PK3, which translocates from the cytosolic face of the ER to the nucleus, where it phosphorylates the TATA-binding protein TRF4, leading to the shutoff of SL RNA transcription, followed by induction of programmed cell death. Here, we demonstrate that SLS is also induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS. The PK3 kinase, which integrates SLS signals, is modified by phosphorylation on multiple sites. To determine which of the phosphorylation events activate PK3, several individual mutations or their combination were generated. These mutations failed to completely eliminate the phosphorylation or translocation of the kinase to the nucleus. The structures of PK3 kinase and its ATP binding domain were therefore modeled. A conserved phenylalanine at position 771 was proposed to interact with ATP, and the PK3F771L mutation completely eliminated phosphorylation under SLS, suggesting that the activation involves most if not all of the phosphorylation sites. The study suggests that the SLS occurs broadly in response to failures in protein sorting, folding, or modification across multiple compartments. IMPORTANCE In this study, we found that SLS is induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS. We also report on the autophosphorylation of PK3 during SLS induction. This study has implications for our understanding of how trypanosomes keep the homeostasis between the ER and the mitochondria and suggests that PK3 may participate in the connection between these two organelles. The pathway, when induced, leads to the suicide of these parasites, and its induction offers a potential novel drug target against these parasites.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , RNA de Protozoário/genética , RNA Líder para Processamento/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Humanos , Proteínas Mitocondriais/genética , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas de Protozoários/genética , Interferência de RNA , Splicing de RNA , RNA de Protozoário/metabolismo , RNA Líder para Processamento/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/metabolismo
10.
Talanta ; 234: 122608, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364421

RESUMO

This paper presents a structured workflow for glass fragment analysis based on a combination of Elemental Analysis using PIXE and Machine Learning tools, with the ultimate goal of standardizing and helping forensic efforts. The proposed workflow was implemented on glass fragments received from the Israeli DIFS (Israeli Police Force's Division of Identification and Forensic Sciences) that were collected from various vehicles, including glass fragments from different manufacturers and years of production. We demonstrate that this workflow can produce models with high (>80%) accuracy in identifying glass fragment's origins and provide a test-case demonstrating how the model can be applied in real-life forensic events. We provide a standard, reproducible methodology that can be used in many forensic domains beyond glass fragments, for example, Gun Shot Residue, flammable liquids, illegal substances, and more.


Assuntos
Vidro , Aprendizado de Máquina , Ciências Forenses , Fluxo de Trabalho
11.
Front Plant Sci ; 12: 671807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249044

RESUMO

The effects of phloretin a phytoalexin from apple, was tested on Pectobacterium brasiliense (Pb1692), an emerging soft-rot pathogen of potato. Exposure of Pb1692 to 0.2 mM phloretin a concentration that does not affect growth, or to 0.4 mM a 50% growth inhibiting concentration (50% MIC), reduced motility, biofilm formation, secretion of plant cell wall-degrading enzymes, production of acyl-homoserine lactone (AHL) signaling molecules and infection, phenotypes that are associated with bacterial population density-dependent system known as quorum sensing (QS). To analyze the effect of growth inhibition on QS, the activity of ciprofloxacin, an antibiotic that impairs cell division, was compared to that of phloretin at 50% MIC. Unlike phloretin, the antibiotic hardly affected the tested phenotypes. The use of DH5α, a QS-negative Escherichia coli strain, transformed with an AHL synthase (ExpI) from Pb1692, allowed to validate direct inhibition of AHL production by phloretin, as demonstrated by two biosensor strains, Chromobacterium violaceaum (CV026) and E. coli (pSB401). Expression analysis of virulence-related genes revealed downregulation of QS-regulated genes (expI, expR, luxS, rsmB), plant cell wall degrading enzymes genes (pel, peh and prt) and motility genes (motA, fim, fliA, flhC and flhD) following exposure to both phloretin concentrations. The results support the inhibition of ExpI activity by phloretin. Docking simulations were used to predict the molecular associations between phloretin and the active site of ExpI, to suggest a likely mode of action for the compound's inhibition of virulence.

12.
Annu Rev Phytopathol ; 59: 153-190, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-33951403

RESUMO

In the battle between bacteria and plants, bacteria often use a population density-dependent regulatory system known as quorum sensing (QS) to coordinate virulence gene expression. In response, plants use innate and induced defense mechanisms that include low-molecular-weight compounds, some of which serve as antivirulence agents by interfering with the QS machinery. The best-characterized QS system is driven by the autoinducer N-acyl-homoserine lactone (AHL), which is produced by AHL synthases (LuxI homologs) and perceived by response regulators (LuxR homologs). Several plant compounds have been shown to directly inhibit LuxI or LuxR. Gaining atomic-level insight into their mode of action and how they interfere with QS enzymes supports the identification and design of novel QS inhibitors.Such information can be gained by combining experimental work with molecular modeling and docking simulations. The summary of these findings shows that plant-derived compounds act as interkingdom cues and that these allomones specifically target bacterial communication systems.


Assuntos
Proteínas de Bactérias , Percepção de Quorum , Acil-Butirolactonas , Bactérias , Doenças das Plantas
13.
J Biol Chem ; 296: 100598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33781744

RESUMO

Patients with cystic fibrosis (CF) harboring the P67L variant in the cystic fibrosis transmembrane conductance regulator (CFTR) often exhibit a typical CF phenotype, including severe respiratory compromise. This rare mutation (reported in <300 patients worldwide) responds robustly to CFTR correctors, such as lumacaftor and tezacaftor, with rescue in model systems that far exceed what can be achieved for the archetypical CFTR mutant F508del. However, the specific molecular consequences of the P67L mutation are poorly characterized. In this study, we conducted biochemical measurements following low-temperature growth and/or intragenic suppression, which suggest a mechanism underlying P67L that (1) shares key pathogenic features with F508del, including off-pathway (non-native) folding intermediates, (2) is linked to folding stability of nucleotide-binding domains 1 and 2, and (3) demonstrates pharmacologic rescue that requires domains in the carboxyl half of the protein. We also investigated the "lasso" helices 1 and 2, which occur immediately upstream of P67. Based on limited proteolysis, pulse chase, and molecular dynamics analysis of full-length CFTR and a series of deletion constructs, we argue that P67L and other maturational processing (class 2) defects impair the integrity of the lasso motif and confer misfolding of downstream domains. Thus, amino-terminal missense variants elicit a conformational change throughout CFTR that abrogates maturation while providing a robust substrate for pharmacologic repair.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Dobramento de Proteína , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice
14.
J Chem Inf Model ; 61(4): 1762-1777, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33720715

RESUMO

Cystic Fibrosis (CF) is caused by mutations to the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel. CFTR is composed of two membrane spanning domains, two cytosolic nucleotide-binding domains (NBD1 and NBD2) and a largely unstructured R-domain. Multiple CF-causing mutations reside in the NBDs and some are known to compromise the stability of these domains. The ability to predict the effect of mutations on the stability of the cytosolic domains of CFTR and to shed light on the mechanisms by which they exert their effect is therefore important in CF research. With this in mind, we have predicted the effect on domain stability of 59 mutations in NBD1 and NBD2 using 15 different algorithms and evaluated their performances via comparison to experimental data using several metrics including the correct classification rate (CCR), and the squared Pearson correlation (R2) and Spearman's correlation (ρ) calculated between the experimental ΔTm values and the computationally predicted ΔΔG values. Overall, the best results were obtained with FoldX and Rosetta. For NBD1 (35 mutations), FoldX provided R2 and ρ values of 0.64 and -0.71, respectively, with an 86% correct classification rate (CCR). For NBD2 (24 mutations), FoldX R2, ρ, and CCR were 0.51, -0.73, and 75%, respectively. Application of the Rosetta high-resolution protocol (Rosetta_hrp) to NBD1 yielded R2, ρ, and CCR of 0.64, -0.75, and 69%, respectively, and for NBD2 yielded R2, ρ, and CCR of 0.29, -0.27, and 50%, respectively. The corresponding numbers for the Rosetta's low-resolution protocol (Rosetta_lrp) were R2 = 0.47, ρ = -0.69, and CCR = 69% for NBD1 and R2 = 0.27, ρ = -0.24, and CCR = 63% for NBD2. For NBD1, both algorithms suggest that destabilizing mutations suffer from destabilizing vdW clashes, whereas stabilizing mutations benefit from favorable H-bond interactions. Two triple consensus approaches based on FoldX, Rosetta_lpr, and Rosetta_hpr were attempted using either "majority-voting" or "all-voting". The all-voting consensus outperformed the individual predictors, albeit on a smaller data set. In summary, our results suggest that the effect of mutations on the stability of CFTR's NBDs could be largely predicted. Since NBDs are common to all ABC transporters, these results may find use in predicting the effect and mechanism of the action of multiple disease-causing mutations in other proteins.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons , Mutação
15.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008467

RESUMO

Virtual screening (VS) is a well-established method in the initial stages of many drug and material design projects. VS is typically performed using structure-based approaches such as molecular docking, or various ligand-based approaches. Most docking tools were designed to be as global as possible, and consequently only require knowledge on the 3D structure of the biotarget. In contrast, many ligand-based approaches (e.g., 3D-QSAR and pharmacophore) require prior development of project-specific predictive models. Depending on the type of model (e.g., classification or regression), predictive ability is typically evaluated using metrics of performance on either the training set (e.g.,QCV2) or the test set (e.g., specificity, selectivity or QF1/F2/F32). However, none of these metrics were developed with VS in mind, and consequently, their ability to reliably assess the performances of a model in the context of VS is at best limited. With this in mind we have recently reported the development of the enrichment optimization algorithm (EOA). EOA derives QSAR models in the form of multiple linear regression (MLR) equations for VS by optimizing an enrichment-based metric in the space of the descriptors. Here we present an improved version of the algorithm which better handles active compounds and which also takes into account information on inactive (either known inactive or decoy) compounds. We compared the improved EOA in small-scale VS experiments with three common docking tools, namely, Glide-SP, GOLD and AutoDock Vina, employing five molecular targets (acetylcholinesterase, human immunodeficiency virus type 1 protease, MAP kinase p38 alpha, urokinase-type plasminogen activator, and trypsin I). We found that EOA consistently outperformed all docking tools in terms of the area under the ROC curve (AUC) and EF1% metrics that measured the overall and initial success of the VS process, respectively. This was the case when the docking metrics were calculated based on a consensus approach and when they were calculated based on two different sets of single crystal structures. Finally, we propose that EOA could be combined with molecular docking to derive target-specific scoring functions.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Preparações Farmacêuticas/química , Acetilcolinesterase/metabolismo , Algoritmos , Área Sob a Curva , Humanos , Ligantes , Modelos Lineares , Simulação de Acoplamento Molecular/métodos , Relação Quantitativa Estrutura-Atividade , Curva ROC
16.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218072

RESUMO

The serine/threonine kinase, GSK-3, is a promising drug discovery target for treating multiple pathological disorders. Most GSK-3 inhibitors that were developed function as ATP competitive inhibitors, with typical limitations in specificity, safety and drug-induced resistance. In contrast, substrate competitive inhibitors (SCIs), are considered highly selective, and more suitable for clinical practice. The development of SCIs has been largely neglected in the past because the ambiguous, undefined nature of the substrate-binding site makes them difficult to design. In this study, we used our previously described structural models of GSK-3 bound to SCI peptides, to design a pharmacophore model and to virtually screen the "drug-like" Zinc database (~6.3 million compounds). We identified leading hits that interact with critical binding elements in the GSK-3 substrate binding site and are chemically distinct from known GSK-3 inhibitors. Accordingly, novel GSK-3 SCI compounds were designed and synthesized with IC50 values of~1-4 µM. Biological activity of the SCI compound was confirmed in cells and in primary neurons that showed increased ß-catenin levels and reduced tau phosphorylation in response to compound treatment. We have generated a new type of small molecule GSK-3 inhibitors and propose to use this strategy to further develop SCIs for other protein kinases.


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Cinética , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Domínios Proteicos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Especificidade por Substrato
17.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105703

RESUMO

Quantitative Structure Activity Relationship (QSAR) models can inform on the correlation between activities and structure-based molecular descriptors. This information is important for the understanding of the factors that govern molecular properties and for designing new compounds with favorable properties. Due to the large number of calculate-able descriptors and consequently, the much larger number of descriptors combinations, the derivation of QSAR models could be treated as an optimization problem. For continuous responses, metrics which are typically being optimized in this process are related to model performances on the training set, for example, R2 and QCV2. Similar metrics, calculated on an external set of data (e.g., QF1/F2/F32), are used to evaluate the performances of the final models. A common theme of these metrics is that they are context -" ignorant". In this work we propose that QSAR models should be evaluated based on their intended usage. More specifically, we argue that QSAR models developed for Virtual Screening (VS) should be derived and evaluated using a virtual screening-aware metric, e.g., an enrichment-based metric. To demonstrate this point, we have developed 21 Multiple Linear Regression (MLR) models for seven targets (three models per target), evaluated them first on validation sets and subsequently tested their performances on two additional test sets constructed to mimic small-scale virtual screening campaigns. As expected, we found no correlation between model performances evaluated by "classical" metrics, e.g., R2 and QF1/F2/F32 and the number of active compounds picked by the models from within a pool of random compounds. In particular, in some cases models with favorable R2 and/or QF1/F2/F32 values were unable to pick a single active compound from within the pool whereas in other cases, models with poor R2 and/or QF1/F2/F32 values performed well in the context of virtual screening. We also found no significant correlation between the number of active compounds correctly identified by the models in the training, validation and test sets. Next, we have developed a new algorithm for the derivation of MLR models by optimizing an enrichment-based metric and tested its performances on the same datasets. We found that the best models derived in this manner showed, in most cases, much more consistent results across the training, validation and test sets and outperformed the corresponding MLR models in most virtual screening tests. Finally, we demonstrated that when tested as binary classifiers, models derived for the same targets by the new algorithm outperformed Random Forest (RF) and Support Vector Machine (SVM)-based models across training/validation/test sets, in most cases. We attribute the better performances of the Enrichment Optimizer Algorithm (EOA) models in VS to better handling of inactive random compounds. Optimizing an enrichment-based metric is therefore a promising strategy for the derivation of QSAR models for classification and virtual screening.


Assuntos
Relação Quantitativa Estrutura-Atividade , Algoritmos , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos/métodos , Canal de Potássio ERG1/química , Humanos , Modelos Lineares , Receptor Muscarínico M3/química , Receptor 5-HT2C de Serotonina/química , Receptores Adrenérgicos alfa 2/química , Receptores de Dopamina D1/química , Máquina de Vetores de Suporte
18.
Respir Med ; 170: 106027, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32843167

RESUMO

BACKGROUND: The Mutation I1234V is a CF causing mutation; however the mechanisms leading to loss of function are not fully understood. In this study, we aimed to characterize phenotypically individuals with the I1234V variant, and to gain a structural point of view of the mutant CFTR using computational studies. METHODS: We conducted a retrospective descriptive study, reviewing the clinical records of 9 Israeli patients. The study was designed to include patients either homozygous or compound heterozygous for the I1234V mutation. For a comparison we analyzed clinical data of 12 patients homozygous for the F508del mutation. Computer models were constructed for I1234V, 1234-1239del and wild type CFTR. RESULTS: Mean FEV1 was 73.8 ± 21% predicted with an average annual rate of decline of 1%. When compared to patients homozygous for F508del the mean annual values of FEV1% predicted during the 6 years of data collection ranged from 51 to 58 ± 22-30 in the F508del group versus 76-82 ± 14-19 in the I1234V group (p < 0.05). Structural models did not demonstrate noticeable differences between the three simulated constructs. Although the mutation resides in the NBD2, no interference with ATP binding was detected. DISCUSSION: This study describes phenotypically patients carrying the I1234V mutation. Compared to patients homozygous for F508del, these patients present with more favorable outcome. Structural models show high similarity between the static and dynamics pictures obtained for both the mutated and the WT-CFTR; however this model does not explore the folding process and therefore may strengthen the notion of a misfolding mutation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Mutação com Perda de Função/genética , Adolescente , Adulto , Aminofenóis/uso terapêutico , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Simulação por Computador , Fibrose Cística/tratamento farmacológico , Combinação de Medicamentos , Feminino , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Fenótipo , Quinolonas/uso terapêutico , Estudos Retrospectivos , Fatores de Tempo , Adulto Jovem
19.
ACS Chem Biol ; 15(7): 1883-1891, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32392032

RESUMO

Salicylic acid (SA) is a hormone that mediates systemic acquired resistance in plants. We demonstrated that SA can interfere with group behavior and virulence of the soft-rot plant pathogen Pectobacterium spp. through quorum sensing (QS) inhibition. QS is a population density-dependent communication system that relies on the signal molecule acyl-homoserine lactone (AHL) to synchronize infection. P. parmentieri mutants, lacking the QS AHL synthase (expI-) or the response regulator (expR-), were used to determine how SA inhibits QS. ExpI was expressed in DH5α, the QS negative strain of Escherichia coli, revealing direct interference of SA with AHL synthesis. Docking simulations showed SA is a potential ExpI ligand. This hypothesis was further confirmed by direct binding of SA to purified ExpI, shown by isothermal titration calorimetry and microscale thermophoresis. Computational alanine scanning was employed to design a mutant ExpI with predicted weaker binding affinity to SA. The mutant was constructed and displayed lower affinity to the ligand in the binding assay, and its physiological inhibition by SA was reduced. Taken together, these data support a likely mode of action and a role for SA as potent inhibitor of AHL synthase and QS.


Assuntos
Proteínas de Bactérias/metabolismo , Ligases/metabolismo , Pectobacterium/patogenicidade , Ácido Salicílico/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ligases/genética , Simulação de Acoplamento Molecular , Mutação , Pectobacterium/enzimologia , Ligação Proteica , Percepção de Quorum/efeitos dos fármacos , Solanum tuberosum/microbiologia , Virulência/efeitos dos fármacos
20.
ACS Med Chem Lett ; 11(5): 638-644, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435364

RESUMO

A series of N-phenyl-2,5-dimethylpyrrole derivatives, designed as hybrids of the antitubercular agents BM212 and SQ109, have been synthesized and evaluated against susceptible and drug-resistant mycobacteria strains. Compound 5d, bearing a cyclohexylmethylene side chain, showed high potency against M. tuberculosis including MDR-TB strains at submicromolar concentrations. The new compound shows bacteriostatic activity and low toxicity and proved to be effective against intracellular mycobacteria too, showing an activity profile similar to isoniazid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...