Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107332, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581966

RESUMO

Activin receptor­like kinase-5 (ALK5) is an outstanding member of the transforming growth factor-ß (TGF-ß) family. (TGF-ß) signaling pathway integrates pleiotropic proteins that regulate various cellular processes such as growth, proliferation, and differentiation. Dysregulation within the signaling pathway can cause variety of diseases, such as fibrosis, cardiovascular disease, and especially cancer, rendering ALK5 a potential drug target. Hence, various small molecules have been designed and synthesized as potent ALK5 inhibitors. In this review, we shed light on the current ATP-competitive inhibitors of ALK5 through diverse heterocyclic based scaffolds that are in clinical or pre-clinical phases of development. Moreover, we focused on the binding interactions of the compounds to the ATP binding site and the structure-activity relationship (SAR) of each scaffold, revealing new scopes for designing novel candidates with enhanced selectivity and metabolic profiles.


Assuntos
Descoberta de Drogas , Inibidores de Proteínas Quinases , Receptor do Fator de Crescimento Transformador beta Tipo I , Humanos , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Estrutura Molecular , Animais
2.
Eur J Med Chem ; 268: 116255, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401190

RESUMO

Breast cancer (BC) still poses a threat worldwide which demands continuous efforts to present safer and efficacious treatment options via targeted therapy. Beside kinases' aberrations as Aurora B kinase which controls cell division, BC adopts distinct metabolic profiles to meet its high energy demands. Accordingly, targeting both aurora B kinase and/or metabolic vulnerability presents a promising approach to tackle BC. Based on a previously reported indolinone-based Aurora B kinase inhibitor (III), and guided by structural modification and SAR investigation, we initially synthesized 11 sulfonamide-indolinone hybrids (5a-k), which showed differential antiproliferative activities against the NCI-60 cell line panel with BC cells displaying preferential sensitivity. Nonetheless, modest activity against Aurora B kinase (18-49% inhibition) was noted at 100 nM. Screening of a representative derivative (5d) against 17 kinases, which are overexpressed in BC, failed to show significant activity at 1 µM concentration, suggesting that kinase inhibitory activity only played a partial role in targeting BC. Bioinformatic analyses of genome-wide transcriptomics (RNA-sequencing), metabolomics, and CRISPR loss-of-function screens datasets suggested that indolinone-completely responsive BC cell lines (MCF7, MDA-MB-468, and T-47D) were more dependent on mitochondrial oxidative phosphorylation (OXPHOS) compared to partially responsive BC cell lines (MDA-MB-231, BT-549, and HS 578 T). An optimized derivative, TC11, obtained by molecular hybridization of 5d with sunitinib polar tail, manifested superior antiproliferative activity and was used for further investigations. Indeed, TC11 significantly reduced/impaired the mitochondrial respiration, as well as mitochondria-dependent ROS production of MCF7 cells. Furthermore, TC11 induced G0/G1 cell cycle arrest and apoptosis of MCF7 BC cells. Notably, anticancer doses of TC11 did not elicit cytotoxic effects on normal cardiomyoblasts and hepatocytes. Altogether, these findings emphasize the therapeutic potential of targeting the metabolic vulnerability of OXPHOS-dependent BC cells using TC11 and its related sulfonamide-indolinone hybrids. Further investigation is warranted to identify their precise/exact molecular target.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Aurora Quinase B , Oxindóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Proliferação de Células
3.
ACS Bio Med Chem Au ; 3(1): 51-61, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37101605

RESUMO

Rapid cell division and reprogramming of energy metabolism are two crucial hallmarks of cancer cells. In humans, hexose trafficking into cancer cells is mainly mediated through a family of glucose transporters (GLUTs), which are facilitative transmembrane hexose transporter proteins. In several breast cancers, fructose can functionally substitute glucose as an alternative energy supply supporting rapid proliferation. GLUT5, the principal fructose transporter, is overexpressed in human breast cancer cells, providing valuable targets for breast cancer detection as well as selective targeting of anticancer drugs using structurally modified fructose mimics. Herein, a novel fluorescence assay was designed aiming to screen a series of C-3 modified 2,5-anhydromannitol (2,5-AM) compounds as d-fructose analogues to explore GLUT5 binding site requirements. The synthesized probes were evaluated for their ability to inhibit the uptake of the fluorescently labeled d-fructose derivative 6-NBDF into EMT6 murine breast cancer cells. A few of the compounds screened demonstrated highly potent single-digit micromolar inhibition of 6-NBDF cellular uptake, which was substantially more potent than the natural substrate d-fructose, at a level of 100-fold or more. The results of this assay are consistent with those obtained from a previous study conducted for some selected compounds against 18F-labeled d-fructose-based probe 6-[18F]FDF, indicating the reproducibility of the current non-radiolabeled assay. These highly potent compounds assessed against 6-NBDF open avenues for the development of more potent probes targeting GLUT5-expressing cancerous cells.

4.
J Enzyme Inhib Med Chem ; 37(1): 2710-2724, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36168121

RESUMO

Multidrug resistance (MDR) is a leading cause for treatment failure in cancer patients. One of the reasons of MDR is drug efflux by ATP-binding cassette (ABC) transporters in eukaryotic cells especially ABCB1 (P-glycoprotein). In this study, certain novel 1,2,5-trisubstituted benzimidazole derivatives were designed utilising ligand based pharmacophore approach. The designed benzimidazoles were synthesised and evaluated for their cytotoxic activity towards doxorubicin-sensitive cell lines (CCRF/CEM and MCF7), as well as against doxorubicin-resistant cancer cells (CEM/ADR 5000 and Caco-2). In particular, compound VIII showed a substantial cytotoxic effect in all previously mentioned cell lines especially in doxorubicin-resistant CEM/ADR5000 cells (IC50 = 8.13 µM). Furthermore, the most promising derivatives VII, VIII and XI were tested for their ABCB1 inhibitory action in the doxorubicin-resistant CEM/ADR 5000 subline which is known for overexpression of ABCB1 transporters. The results showed that compound VII exhibited the best ABCB1 inhibitory activity at three tested concentrations (22.02 µM (IC50), 50 µM and 100 µM) in comparison to verapamil as a reference ABCB1 inhibitor. Such inhibition resulted in a synergistic effect and a massive decrease in the IC50 of doxorubicin (34.5 µM) when compound VII was used in a non-toxic dose in combination with doxorubicin in doxorubicin-resistant cells CEM/ADR 5000 (IC50(Dox+VII) = 3.81 µM). Molecular modelling studies were also carried out to explain the key interactions of the target benzimidazoles at the ABCB1 binding site. Overall the obtained results from this study suggest that 1,2,5-trisubstituted benzimidazoles possibly are promising candidates for further optimisation and development of potential anticancer agents with ABCB1 inhibitory activity and therefore overcome MDR in cancer cells.


Assuntos
Antineoplásicos , Neoplasias , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia , Trifosfato de Adenosina , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Ligantes , Verapamil/farmacologia
5.
Arch Pharm (Weinheim) ; 355(2): e2100302, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34796536

RESUMO

Novel series of pyrazolo[3,4-b]pyridines 9a-j and 14a-f were prepared via a one-pot three-component reaction. Compounds 9a-j were synthesized by the reaction of 3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-5-amine (4) with benzoyl acetonitriles 3a,b and aldehydes 5a-e, whereas the spiro derivatives 14a-f were synthesized by the reaction of pyrazole derivative 4 with 3a-c and indoline-2,3-diones 10a,b. Screening of the antiproliferative activity of 9a-j and 14a-f revealed that 14a and 14d were the most potent analogues against HepG2 and HeLa cells, with IC50 = 4.2 and 5.9 µM, respectively. Moreover, compounds 9c and 14a could promote cell cycle disturbance and apoptosis in HepG2 cells, as evidenced by DNA flow cytometry and Annexin V-FITC/PI assays. Cell cycle analysis of 9c and 14a indicated a reduction in HepG2 cells in the G1 phase, with arrest in the S phase and the G2/M phase, respectively. Also, 9c and 14a are good apoptotic inducers in the HepG2 cell line. Furthermore, compounds 9h and 14d stood out as the most efficient antiproliferative agents in the NCI 60-cell line panel screening, with mean GI % equal to 60.3% and 55.4%, respectively. Additionally, 9c, 9h, 14a, and 14d showed good inhibitory action against the cellular pathway regulator p38α kinase, with IC50 = 0.42, 0.41, 0.13, and 0.64 µM, respectively. A docking study was carried out on the p38α kinase active site, showing a binding mode comparable to that of reported p38 mitogen-activated protein kinase inhibitors. These newly discovered pyrazolo[3,4-b]pyridines could be considered as potential candidates for the development of newly targeted anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Pirazóis/farmacologia , Piridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
6.
Bioorg Chem ; 113: 105019, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34091286

RESUMO

Vascular endothelial growth factor receptor (VEGFR) is one of the well-known targets that control angiogenesis and cancer progression. In this study, we are reporting the design, synthesis and biological evaluation of a series of 4-substituted thieno[2,3-d]pyrimidine derivatives as VEGFR-2 inhibitors. The design of these compounds was based on interactions extracted from crystal structure of potent pyrrolo[3,2-d]pyrimidine inhibitor VIII with VEGFR-2 (PDB: 3VHE). In addition to these interactions, the new compounds were also designed to interact with residues in the solvent accessible region such as Asn923. Accordingly, the thienopyrimidine target compounds were synthesized and subjected to VEGFR-2 enzyme inhibition assay. Several target compounds (7d-f, 8b-c, 8e-g and 15c) exhibited potent inhibitory activities against VEGFR-2 with IC50 values in low nanomolar range. Compounds 8b and 8e revealed exceptionally potent inhibitory activity with IC50 of 5 and 3.9 nM, respectively. The molecular docking analysis and molecular dynamics simulation were also performed to further investigate these findings.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/metabolismo , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
J Enzyme Inhib Med Chem ; 36(1): 1290-1312, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34187263

RESUMO

A series of thieno[2,3-d]pyrimidine-based hydroxamic acid hybrids was designed and synthesised as multitarget anti-cancer agents, through incorporating the pharmacophore of EGFR, VEGFR2 into the inhibitory functionality of HDAC6. Three compounds (12c, 15b and 20b) were promising hits, whereas (12c) exhibited potent VEGFR2 inhibition (IC50=185 nM), potent EGFR inhibition (IC50=1.14 µM), and mild HDAC6 inhibition (23% inhibition). Moreover, compound (15c) was the most potent dual inhibitor among all the synthesised compounds, as it exhibited potent EGFR and VEGFR2 inhibition (IC50=19 nM) and (IC50=5.58 µM), respectively. While compounds (20d) and (7c) displayed nanomolar selective kinase inhibition with EGFR IC50= 68 nM and VEGFR2 IC50= 191 nM, respectively. All of the synthesised compounds were screened in vitro for their cytotoxic effect on 60 human NCI tumour cell lines. Additionally, molecular docking studies and ADMET studies were carried out to gain further insight into their binding mode and predict the pharmacokinetic properties of all the synthesised inhibitors.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/química , Pirimidinas/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacocinética , Humanos , Técnicas In Vitro , Simulação de Acoplamento Molecular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
8.
Eur J Med Chem ; 199: 112312, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32442851

RESUMO

Antimicrobial resistance is an imminent threat worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the "superbug" family, manifesting resistance through the production of a penicillin binding protein, PBP2a, an enzyme that provides its transpeptidase activity to allow cell wall biosynthesis. PBP2a's low affinity to most ß-lactams, confers resistance to MRSA against numerous members of this class of antibiotics. An Achilles' heel of MRSA, PBP2a represents a substantial target to design novel antibiotics to tackle MRSA threat via inhibition of the bacterial cell wall biosynthesis. In this review we bring into focus the PBP2a enzyme and examine the various aspects related to its role in conferring resistance to MRSA strains. Moreover, we discuss several antibiotics and antimicrobial agents designed to target PBP2a and their therapeutic potential to meet such a grave threat. In conclusion, we consider future perspectives for targeting MRSA infections.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Química Farmacêutica , Inibidores Enzimáticos/química , Staphylococcus aureus Resistente à Meticilina/enzimologia , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/metabolismo
9.
J Enzyme Inhib Med Chem ; 34(1): 1573-1589, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31852269

RESUMO

Pyridazine scaffolds are considered privileged structures pertaining to its novelty, chemical stability, and synthetic feasibility. In our quest towards the development of novel scaffolds for effective vascular endothelial growth 2 (VEGFR-2) inhibition with antiangiogenic activity, four novel series of pyridazines were designed and synthesised. Five of the synthesised compounds; namely (8c, 8f, 15, 18b, and 18c) exhibited potent VEGFR-2 inhibitory potency (>80%); with IC50 values ranging from low micromolar to nanomolar range; namely compounds 8c, 8f, 15, 18c with (1.8 µM, 1.3 µM, 1.4 µM, 107 nM), respectively. Moreover, 3-[4-{(6-oxo-1,6-dihydropyridazin-3-yl)oxy}phenyl]urea derivative (18b) exhibited nanomolar potency towards VEGFR-2 (60.7 nM). In cellular assay, the above compounds showed excellent inhibition of VEGF-stimulated proliferation of human umbilical vein endothelial cells at 10 µM concentration. Finally, an extensive molecular simulation study was performed to investigate the probable interaction with VEGFR-2.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridazinas/síntese química , Piridazinas/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Bioorg Chem ; 92: 103239, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31513938

RESUMO

Cyclin Dependent Kinases CDKs unpredictable activity has been accounted for a wide assortment of human malignancies, so it might be conceivable to design pharmacologically relevant ligands that go about as specific and potent inhibitors of CDK2 action. In this respect, a series of novel pyrazolo[1,5-a][1,3,5]triazine derivatives were designed, synthesized and evaluated for CDK2 enzyme inhibitory and anticancer activity. Compounds 9f and 10c showed best CDK2 inhibition among the newly synthesized compounds, with percent inhibition at 82.38%, and 81.96% against CDK2 and IC50 of 1.85 and 2.09 µM, respectively. Additionally, the newly synthesized compounds were tested for their antiproliferative activity against 60 NCI cell lines. Molecular docking revealed the binding mode of these new compounds into the roscovitine binding site of CDK2 enzyme (PDB code: 3ddq). Conclusively, pyrazolotriazine derivatives represent a talented starting point for further study as anticancer drug.


Assuntos
Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Pirazinas/química , Triazinas/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular
11.
Bioorg Chem ; 82: 340-359, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30428414

RESUMO

VEGFR-2 has a pivotal role in promoting cancer angiogenesis. Herein, two series of novel indazole-based derivatives were designed, synthesized and evaluated for their in vitro inhibitory action against VEGFR-2 kinase enzyme. The second series 11a-e exhibited better potency than the first one 7a-d and 8a-f. Compounds 11b, 11c and 11e exhibited the most potent action, with IC50 of 5.4 nM, 5.6 nM and 7 nM, respectively. As a measure of cellular VEGFR-2 inhibition, compounds 11b and 11c showed strong inhibition of human umbilical vein endothelial cells (HUVEC) proliferation with 80% and 99.6% inhibition at 10 µM concentration, respectively. Attempting to interpret SAR of the synthesized compounds, and provide a basis for further optimization; a comprehensive modeling study was implemented. Molecular docking, dynamics simulation and free energy calculation of the synthesized compounds along with known VEGFR-2 inhibitors were applied. The study illustrated the effect of several factors on VEGFR-2 inhibition, such as the interaction with solvent accessible region of the enzyme, the presence of NH linker and the degree of conformational restriction. Finally, our compounds were evaluated for their in vitro anti-proliferative effect against the full NCI panel of cancer cell lines, where compounds 11a and 11c displayed mean GI% of 93 and 130%, respectively, and showed partly a better behavior than the FDA approved drug sorafenib, with respect to activity (GI50) and safety (LC50) against several cell lines. Thus, compound 11c represents a promising candidate for cancer treatment through antiangiogenic dependent and antiangiogenic independent modes of action.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Indazóis/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Caspase 3/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Desenho de Fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Indazóis/síntese química , Indazóis/química , Indazóis/metabolismo , Cinética , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Termodinâmica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Bioorg Chem ; 81: 612-629, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30248512

RESUMO

Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a crucial role in cancer angiogenesis. In the current study, a series of novel pyrrolo[2,3-d]pyrimidine based-compounds was designed and synthesized as VEGFR-2 inhibitors, in accordance to the structure activity relationship (SAR) studies of known type II VEGFR-2 inhibitors. The newly synthesized compounds were evaluated for their ability to inhibit VEGFR-2 kinase enzyme in vitro. All the tested compounds demonstrated highly potent dose-related VEGFR-2 inhibition with IC50 values in nanomolar range. Among these compounds, pyrrolo[2,3-d]pyrimidine derivatives carrying biaryl urea moieties (12d and 15c) exhibited IC50 values of 11.9 and 13.6 nM respectively. Additionally, most of the newly synthesized final compounds were tested on 60 human cancer cell lines. Docking of these compounds into the inactive conformation of VEGFR-2 was performed which showed comparable binding modes to that of the FDA approved VEGFR-2 kinase inhibitors. These newly discovered potent kinase inhibitors could be considered as potential candidates for the development of new targeted anticancer agent.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirróis/química , Pirróis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/síntese química , Pirróis/síntese química , Ureia/análogos & derivados , Ureia/síntese química , Ureia/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
R Soc Open Sci ; 5(6): 172407, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30110445

RESUMO

A series of novel pyranoquinolinone-based Schiff's bases were designed and synthesized. They were evaluated for topoisomerase IIß (TOP2B) inhibitory activity, and cytotoxicity against breast cancer cell line (MCF-7) for the development of novel anticancer agents. A molecular docking study was employed to investigate their binding and functional properties as TOP2B inhibitors, using the Discovery Studio 2.5 software, where they showed very interesting ability to intercalate the DNA-topoisomerase complex. Compounds 2a, 2c and 2f showed high docking score values (82.36% -29.98 kcal mol-1 for compound 2a, 78.18% -26.98 kcal mol-1 for compound 2c and 78.65, -28.11 kcal mol-1 for compound 2f) and revealed the highest enzyme inhibition activity. The best hit compounds exhibited highly potent TOP2B inhibitors with submicromolar IC50 at 5 µM compared to the reference doxorubicin.

14.
Eur J Med Chem ; 155: 316-336, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29902719

RESUMO

In light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC50 values of 91.7 nM and 1.2 µM, respectively. Notably, 27b dramatically reduced the viability of various patient-derived cancer cells preferentially overexpressing EGFR/HER2 (A431, MDA-MBA-361 and SKBr3 with IC50 values of 1.45, 3.5 and 4.83 µM, respectively). Additionally, 27b efficiently thwarted the proliferation of lapatinib-resistant human non-small lung carcinoma (NCI-H1975) cells, harboring T790 M mutation, with IC50 of 4.2 µM. Consistently, 27b significantly blocked EGF-induced EGFR activation and inactivated its downstream AKT/mTOR/S6 signalling pathway triggering apoptotic cell death in NCI-H1975 cells. The present study presents a promising candidate for further design and development of novel EGFR/HER2 inhibitors capable of overcoming EGFR TKIs resistance.


Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/metabolismo , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade
15.
Eur J Med Chem ; 152: 318-328, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29734000

RESUMO

With the continued rise of antibiotic resistance and reduced susceptibility to almost all front-line antibiotics, multidrug-resistant Gram-positive bacterial infections represent an incessant threat to healthcare providers. This study presents a new series of phenylthiazole compounds where two active moieties were combined into one scaffold. The antibacterial activity of the hybrid structures extended to include several clinically-relevant multi-drug resistant pathogens including methicillin-resistant and vancomycin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, vancomycin-resistant enterococci, cephalosporin-resistant and methicillin-resistant Streptococcus pneumoniae, and Listeria monocytogenes. In addition, the most potent compounds, 16a and 17a, exhibited a fast bactericidal mode of action in vitro with low susceptibility to induce bacterial resistance. In addition to its potent spectrum of activity against Gram-positive bacterial pathogens, compound 17a was found to be metabolically stable in rats, with a half-life of 4 h.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Células CACO-2 , Relação Dose-Resposta a Droga , Humanos , Listeria monocytogenes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Staphylococcus/crescimento & desenvolvimento , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
16.
Drug Res (Stuttg) ; 68(9): 485-498, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29433143

RESUMO

Pyrrolopyrimidine derivatives represent a class of biologically active heterocyclic compounds which can serve as promising scaffolds that display remarkable biological activities, such as anti-inflammatory, antimicrobial, antiviral and anticancer. In the last few years, several pyrrolopyrimidine derivatives have been approved by the US FDA and in other countries for the treatment of different diseases or are currently in phase I/II clinical trials. Due to their inimitable antioxidant and anti-tumor properties, researchers were inspired to develop novel derivatives for the treatment of different types of cancer. The present review summarizes recent literature up to 2017 on the most recent development in the medicinal chemistry of pyrrolopyrimidine derivatives and their potential as anticancer therapeutics, especially compounds acting as kinase inhibitors.


Assuntos
Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Desenho de Fármacos , Humanos , Relação Estrutura-Atividade
17.
Bioorg Chem ; 75: 368-392, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29096097

RESUMO

EGFR has a key role in cell growth. Its mutation and overexpression share in epithelial malignancies and tumor growth. Quinazoline and quinoline derivatives are common anticancer intracellular inhibitors of EGFR kinase, and their optimization is an important issue for development of potent targeted anticancer agents. Based on these facts, different strategies were used for optimizing our reported quinoline-3-carboxamide compound III (EGFR IC50 = 5.283 µM and MCF-7 IC50 = 3.46 µM) through different molecular modeling techniques. The optimized compounds were synthesized and subjected to EGFR binding assay and accordingly some more potent inhibitors were obtained. The most potent quinoline-3-carboxamides were the furan derivative 5o; thiophene derivative 6b; and benzyloxy derivative 10 showing EGFR IC50 values 2.61, 0.49 and 1.73 µM, respectively. Furthermore, the anticancer activity of compounds eliciting potent EGFR inhibition (5o, 5p, 6b, 8a, 8b, and 10) was evaluated against MCF-7 cell line where they exhibited IC50 values 3.355, 3.647, 5.069, 3.617, 0.839 and 10.85 µM, respectively. Compound 6b was selected as lead structure for further optimization hoping to produce more potent EGFR inhibitors.


Assuntos
Amidas/química , Antineoplásicos/síntese química , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Quinolinas/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Quinolinas/metabolismo , Quinolinas/farmacologia , Relação Estrutura-Atividade , Termodinâmica
18.
Eur J Med Chem ; 142: 131-151, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754471

RESUMO

Epidermal Growth Factor Receptor (EGFR) stands out as a key player in the development of many cancers. Its dysregulation is associated with a vast number of tumors such as non-small-cell lung cancer, colon cancer, head-and-neck cancer, breast and ovarian cancer. Being implicated in the development of a number of the most lethal cancers worldwide, EGFR has long been considered as a focal target for cancer therapies, ever since the FDA approval of "Gefitinib" in 2003 and up to the last FDA approved small molecule EGFR kinase inhibitor "Osimertinib" in 2015. Studies are still going on to find more efficient EGFR inhibitors due to the continuous emergence of resistance to the current inhibitors. Cancerous cells resist EGFR tyrosine kinase inhibitors (TKIs) through various mechanisms, the most commonly reported ones are the T790M mutation and HER2 amplification. Therefore, tackling EGFR TKIs-resistant tumors through a multi-targeting approach comprising a dual EGFR/HER2 inhibitor that is also capable of inhibiting the mutant T790M EGFR is anticipated to overcome drug resistance. In this review, we will survey the structural aspects of EGFR family and the structure-activity relationship of representative dual EGFR/HER2 inhibitors. To follow, we will discuss the structural aspects of the mutation-driven resistance and various design strategies to overcome it. Finally, we will review the SAR of exemplary irreversible dual EGFR/HER2 inhibitors that can overcome the mutation-driven resistance.


Assuntos
Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Amplificação de Genes , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Mutação Puntual , Domínios Proteicos , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
19.
ChemMedChem ; 12(13): 1045-1054, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28544630

RESUMO

Herein we describe the synthesis and biological evaluation of a series of novel benzothiazoles based on a diaryl urea scaffold previously reported in some allosteric chemokine receptor 2 (CXCR2) inhibitors. From a library of 41 new compounds, 17 showed significant inhibition of CXCR2, with IC50 values less than 10 µm and selectivity over CXCR4. Our ADMET simulations suggest favorable drug-like properties for the active compounds. Importantly, we developed a predictive model that can distinguish active from inactive compounds; this will serve as a valuable tool to guide the design of optimized compounds to be evaluated in preclinical models.


Assuntos
Benzotiazóis/farmacologia , Compostos de Fenilureia/farmacologia , Receptores de Interleucina-8B/antagonistas & inibidores , Benzotiazóis/síntese química , Benzotiazóis/toxicidade , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/toxicidade , Receptores CXCR4/antagonistas & inibidores , Relação Estrutura-Atividade , beta-Arrestina 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...