Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Cancer Res ; 27(23): 6343-6353, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34330715

RESUMO

PURPOSE: We performed a NCI-sponsored, prospective study of neoadjuvant FOLFIRINOX followed by chemoradiation with carboplatin/paclitaxel followed by surgery in patients with locally advanced gastric or gastroesophageal cancer. PATIENTS AND METHODS: The primary objective was to determine completion rate of neoadjuvant FOLFIRINOX × 8 followed by chemoradiation. Secondary endpoints were toxicity and pathologic complete response (pCR) rate. Exploratory analysis was performed of circulating tumor DNA (ctDNA) to treatment response. RESULTS: From October 2017 to June 2018, 25 patients were enrolled. All patients started FOLFIRINOX, 92% completed all eight planned cycles, and 88% completed chemoradiation. Twenty (80%) patients underwent surgical resection, and 7 had a pCR (35% in resected cohort, 28% intention to treat). Tumor-specific mutations were identified in 21 (84%) patients, of whom 4 and 17 patients had undetectable and detectable ctDNA at baseline, respectively. Presence of detectable post-chemoradiation ctDNA (P = 0.004) and/or postoperative ctDNA (P = 0.045) were associated with disease recurrence. CONCLUSIONS: Here we show neoadjuvant FOLFIRINOX followed by chemoradiation for locally advanced gastroesophageal cancer is feasible and yields a high rate of pCR. ctDNA appears to be a promising predictor of postoperative recurrence.See related commentary by Catenacci, p. 6281.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Fluoruracila , Humanos , Irinotecano , Leucovorina , Terapia Neoadjuvante/métodos , Recidiva Local de Neoplasia , Oxaliplatina , Neoplasias Pancreáticas/patologia , Projetos Piloto , Estudos Prospectivos , Resultado do Tratamento
2.
Clin Cancer Res ; 27(20): 5586-5594, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33926918

RESUMO

PURPOSE: Detection of persistent circulating tumor DNA (ctDNA) after curative-intent surgery can identify patients with minimal residual disease (MRD) who will ultimately recur. Most ctDNA MRD assays require tumor sequencing to identify tumor-derived mutations to facilitate ctDNA detection, requiring tumor and blood. We evaluated a plasma-only ctDNA assay integrating genomic and epigenomic cancer signatures to enable tumor-uninformed MRD detection. EXPERIMENTAL DESIGN: A total of 252 prospective serial plasma specimens from 103 patients with colorectal cancer undergoing curative-intent surgery were analyzed and correlated with recurrence. RESULTS: Of 103 patients, 84 [stage I (9.5%), II (23.8%), III (47.6%), IV (19%)] had evaluable plasma drawn after completion of definitive therapy, defined as surgery only (n = 39) or completion of adjuvant therapy (n = 45). In "landmark" plasma drawn 1-month (median, 31.5 days) after definitive therapy and >1 year follow-up, 15 patients had detectable ctDNA, and all 15 recurred [positive predictive value (PPV), 100%; HR, 11.28 (P < 0.0001)]. Of 49 patients without detectable ctDNA at the landmark timepoint, 12 (24.5%) recurred. Landmark recurrence sensitivity and specificity were 55.6% and 100%. Incorporating serial longitudinal and surveillance (drawn within 4 months of recurrence) samples, sensitivity improved to 69% and 91%. Integrating epigenomic signatures increased sensitivity by 25%-36% versus genomic alterations alone. Notably, standard serum carcinoembryonic antigen levels did not predict recurrence [HR, 1.84 (P = 0.18); PPV = 53.9%]. CONCLUSIONS: Plasma-only MRD detection demonstrated favorable sensitivity and specificity for recurrence, comparable with tumor-informed approaches. Integrating analysis of epigenomic and genomic alterations enhanced sensitivity. These findings support the potential clinical utility of plasma-only ctDNA MRD detection.See related commentary by Bent and Kopetz, p. 5449.


Assuntos
DNA Tumoral Circulante/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/cirurgia , Neoplasia Residual/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/patologia , Feminino , Testes Hematológicos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
3.
Clin Cancer Res ; 26(8): 1877-1885, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941831

RESUMO

PURPOSE: ctDNA offers a promising, noninvasive approach to monitor therapeutic efficacy in real-time. We explored whether the quantitative percent change in ctDNA early after therapy initiation can predict treatment response and progression-free survival (PFS) in patients with metastatic gastrointestinal cancer. EXPERIMENTAL DESIGN: A total of 138 patients with metastatic gastrointestinal cancers and tumor profiling by next-generation sequencing had serial blood draws pretreatment and at scheduled intervals during therapy. ctDNA was assessed using individualized droplet digital PCR measuring the mutant allele fraction in plasma of mutations identified in tumor biopsies. ctDNA changes were correlated with tumor markers and radiographic response. RESULTS: A total of 138 patients enrolled. A total of 101 patients were evaluable for ctDNA and 68 for tumor markers at 4 weeks. Percent change of ctDNA by 4 weeks predicted partial response (PR, P < 0.0001) and clinical benefit [CB: PR and stable disease (SD), P < 0.0001]. ctDNA decreased by 98% (median) and >30% for all PR patients. ctDNA change at 8 weeks, but not 2 weeks, also predicted CB (P < 0.0001). Four-week change in tumor markers also predicted response (P = 0.0026) and CB (P = 0.022). However, at a clinically relevant specificity threshold of 90%, 4-week ctDNA change more effectively predicted CB versus tumor markers, with a sensitivity of 60% versus 24%, respectively (P = 0.0109). Patients whose 4-week ctDNA decreased beyond this threshold (≥30% decrease) had a median PFS of 175 days versus 59.5 days (HR, 3.29; 95% CI, 1.55-7.00; P < 0.0001). CONCLUSIONS: Serial ctDNA monitoring may provide early indication of response to systemic therapy in patients with metastatic gastrointestinal cancer prior to radiographic assessments and may outperform standard tumor markers, warranting further evaluation.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , Neoplasias Gastrointestinais/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Neoplasias Gastrointestinais/sangue , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estudos Prospectivos , Taxa de Sobrevida , Resultado do Tratamento , Adulto Jovem
4.
Clin Cancer Res ; 26(7): 1633-1643, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31776128

RESUMO

PURPOSE: Although KRAS represents the most commonly mutated oncogene, it has long been considered an "undruggable" target. Novel covalent inhibitors selective for the KRASG12C mutation offer the unprecedented opportunity to target KRAS directly. However, prior efforts to target the RAS-MAPK pathway have been hampered by adaptive feedback, which drives pathway reactivation and resistance. EXPERIMENTAL DESIGN: A panel of KRASG12C cell lines were treated with the KRASG12C inhibitors ARS-1620 and AMG 510 to assess effects on signaling and viability. Isoform-specific pulldown of activated GTP-bound RAS was performed to evaluate effects on the activity of specific RAS isoforms over time following treatment. RTK inhibitors, SHP2 inhibitors, and MEK/ERK inhibitors were assessed in combination with KRASG12C inhibitors in vitro and in vivo as potential strategies to overcome resistance and enhance efficacy. RESULTS: We observed rapid adaptive RAS pathway feedback reactivation following KRASG12C inhibition in the majority of KRASG12C models, driven by RTK-mediated activation of wild-type RAS, which cannot be inhibited by G12C-specific inhibitors. Importantly, multiple RTKs can mediate feedback, with no single RTK appearing critical across all KRASG12C models. However, coinhibition of SHP2, which mediates signaling from multiple RTKs to RAS, abrogated feedback reactivation more universally, and combined KRASG12C/SHP2 inhibition drove sustained RAS pathway suppression and improved efficacy in vitro and in vivo. CONCLUSIONS: These data identify feedback reactivation of wild-type RAS as a key mechanism of adaptive resistance to KRASG12C inhibitors and highlight the potential importance of vertical inhibition strategies to enhance the clinical efficacy of KRASG12C inhibitors.See related commentary by Yaeger and Solit, p. 1538.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas p21(ras) , Retroalimentação , Humanos , Mutação , Oncogenes , Piperazinas , Piridinas , Pirimidinas
6.
Nat Med ; 25(9): 1415-1421, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501609

RESUMO

During cancer therapy, tumor heterogeneity can drive the evolution of multiple tumor subclones harboring unique resistance mechanisms in an individual patient1-3. Previous case reports and small case series have suggested that liquid biopsy (specifically, cell-free DNA (cfDNA)) may better capture the heterogeneity of acquired resistance4-8. However, the effectiveness of cfDNA versus standard single-lesion tumor biopsies has not been directly compared in larger-scale prospective cohorts of patients following progression on targeted therapy. Here, in a prospective cohort of 42 patients with molecularly defined gastrointestinal cancers and acquired resistance to targeted therapy, direct comparison of postprogression cfDNA versus tumor biopsy revealed that cfDNA more frequently identified clinically relevant resistance alterations and multiple resistance mechanisms, detecting resistance alterations not found in the matched tumor biopsy in 78% of cases. Whole-exome sequencing of serial cfDNA, tumor biopsies and rapid autopsy specimens elucidated substantial geographic and evolutionary differences across lesions. Our data suggest that acquired resistance is frequently characterized by profound tumor heterogeneity, and that the emergence of multiple resistance alterations in an individual patient may represent the 'rule' rather than the 'exception'. These findings have profound therapeutic implications and highlight the potential advantages of cfDNA over tissue biopsy in the setting of acquired resistance.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA de Neoplasias/sangue , Neoplasias Gastrointestinais/sangue , Biópsia Líquida , Autopsia , Ácidos Nucleicos Livres/genética , Estudos de Coortes , DNA de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Sequenciamento do Exoma
7.
Cancer Discov ; 9(8): 1064-1079, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31109923

RESUMO

ATP-competitive fibroblast growth factor receptor (FGFR) kinase inhibitors, including BGJ398 and Debio 1347, show antitumor activity in patients with intrahepatic cholangiocarcinoma (ICC) harboring activating FGFR2 gene fusions. Unfortunately, acquired resistance develops and is often associated with the emergence of secondary FGFR2 kinase domain mutations. Here, we report that the irreversible pan-FGFR inhibitor TAS-120 demonstrated efficacy in 4 patients with FGFR2 fusion-positive ICC who developed resistance to BGJ398 or Debio 1347. Examination of serial biopsies, circulating tumor DNA (ctDNA), and patient-derived ICC cells revealed that TAS-120 was active against multiple FGFR2 mutations conferring resistance to BGJ398 or Debio 1347. Functional assessment and modeling the clonal outgrowth of individual resistance mutations from polyclonal cell pools mirrored the resistance profiles observed clinically for each inhibitor. Our findings suggest that strategic sequencing of FGFR inhibitors, guided by serial biopsy and ctDNA analysis, may prolong the duration of benefit from FGFR inhibition in patients with FGFR2 fusion-positive ICC. SIGNIFICANCE: ATP-competitive FGFR inhibitors (BGJ398, Debio 1347) show efficacy in FGFR2-altered ICC; however, acquired FGFR2 kinase domain mutations cause drug resistance and tumor progression. We demonstrate that the irreversible FGFR inhibitor TAS-120 provides clinical benefit in patients with resistance to BGJ398 or Debio 1347 and overcomes several FGFR2 mutations in ICC models.This article is highlighted in the In This Issue feature, p. 983.


Assuntos
Trifosfato de Adenosina/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Adulto , Idoso , Linhagem Celular Tumoral , Colangiocarcinoma/diagnóstico , DNA Tumoral Circulante , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/genética , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/química , Pirimidinas/farmacologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tomografia Computadorizada por Raios X
8.
JCO Precis Oncol ; 20182018.
Artigo em Inglês | MEDLINE | ID: mdl-30123863

RESUMO

PURPOSE: Third-generation epidermal growth factor receptor (EGFR) inhibitors like nazartinib are active against EGFR mutation-positive lung cancers with T790M-mediated acquired resistance to initial anti-EGFR treatment, but some patients have mixed responses. METHODS: Multiple serial tumor and liquid biopsies were obtained from two patients before, during, and after treatment with nazartinib. Next-generation sequencing and droplet digital polymerase chain reaction were performed to assess heterogeneity and clonal dynamics. RESULTS: We observed the simultaneous emergence of T790M-dependent and -independent clones in both patients. Serial plasma droplet digital polymerase chain reaction illustrated shifts in relative clonal abundance in response to various systemic therapies, confirming a molecular basis for the clinical mixed radiographic responses observed. CONCLUSION: Heterogeneous responses to treatment targeting a solitary resistance mechanism can be explained by coexistent tumor subclones harboring distinct genetic signatures. Serial liquid biopsies offer an opportunity to monitor clonal dynamics and the emergence of resistance and may represent a useful tool to guide therapeutic strategies.

9.
Cancer Discov ; 8(9): 1096-1111, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29903880

RESUMO

Clinically relevant subtypes exist for pancreatic ductal adenocarcinoma (PDAC), but molecular characterization is not yet standard in clinical care. We implemented a biopsy protocol to perform time-sensitive whole-exome sequencing and RNA sequencing for patients with advanced PDAC. Therapeutically relevant genomic alterations were identified in 48% (34/71) and pathogenic/likely pathogenic germline alterations in 18% (13/71) of patients. Overall, 30% (21/71) of enrolled patients experienced a change in clinical management as a result of genomic data. Twenty-six patients had germline and/or somatic alterations in DNA-damage repair genes, and 5 additional patients had mutational signatures of homologous recombination deficiency but no identified causal genomic alteration. Two patients had oncogenic in-frame BRAF deletions, and we report the first clinical evidence that this alteration confers sensitivity to MAPK pathway inhibition. Moreover, we identified tumor/stroma gene expression signatures with clinical relevance. Collectively, these data demonstrate the feasibility and value of real-time genomic characterization of advanced PDAC.Significance: Molecular analyses of metastatic PDAC tumors are challenging due to the heterogeneous cellular composition of biopsy specimens and rapid progression of the disease. Using an integrated multidisciplinary biopsy program, we demonstrate that real-time genomic characterization of advanced PDAC can identify clinically relevant alterations that inform management of this difficult disease. Cancer Discov; 8(9); 1096-111. ©2018 AACR.See related commentary by Collisson, p. 1062This article is highlighted in the In This Issue feature, p. 1047.


Assuntos
Carcinoma Ductal Pancreático/genética , Perfilação da Expressão Gênica/métodos , Variação Genética , Genômica/métodos , Neoplasias Pancreáticas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/tratamento farmacológico , Reparo do DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Mutação em Linhagem Germinativa , Recombinação Homóloga , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/tratamento farmacológico , Medicina de Precisão , Análise de Sequência de RNA/métodos , Sequenciamento do Exoma/métodos
10.
Cancer Discov ; 8(4): 417-427, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29431697

RESUMO

Clonal heterogeneity associated with acquired resistance presents a critical therapeutic challenge. Whole-exome sequencing of paired tumor biopsies and targeted sequencing of cell-free DNA (cfDNA) from patients with BRAFV600E colorectal cancer receiving BRAF inhibitor combinations identified 14 distinct alterations in MAPK pathway components driving acquired resistance, with as many as eight alterations in a single patient. We developed a pooled clone system to study clonal outgrowth during acquired resistance, in vitro and in vivoIn vitro, the dynamics of individual resistant clones could be monitored in real time in cfDNA isolated from culture media during therapy. Outgrowth of multiple resistant clones was observed during therapy with BRAF, EGFR, and MEK inhibitor combinations. However, ERK inhibition, particularly in combination with BRAF and EGFR inhibition, markedly abrogated clonal outgrowth in vitro and in vivo Thus, convergent, up-front therapy may suppress outgrowth of heterogeneous clones harboring clinically observed resistance alterations, which may improve clinical outcome.Significance: We observed heterogeneous, recurrent alterations in the MAPK pathway as key drivers of acquired resistance in BRAFV600E colorectal cancer, with multiple concurrent resistance alterations detectable in individual patients. Using a novel pooled clone system, we identify convergent up-front therapeutic strategies capable of intercepting multiple resistance mechanisms as potential approaches to suppress emergence of acquired resistance. Cancer Discov; 8(4); 417-27. ©2018 AACR.See related commentary by Janku, p. 389See related article by Corcoran et al., p. 428This article is highlighted in the In This Issue feature, p. 371.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Sistema de Sinalização das MAP Quinases , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...