Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3921, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724496

RESUMO

Resonator-based optical frequency comb generation is an enabling technology for a myriad of applications ranging from communications to precision spectroscopy. These frequency combs can be generated in nonlinear resonators driven using either continuous-wave (CW) light, which requires alignment of the pump frequency with the cavity resonance, or pulsed light, which also mandates that the pulse repetition rate and cavity free spectral range (FSR) are carefully matched. Advancements in nanophotonics have ignited interest in chip-scale optical frequency combs. However, realizing pulse-driven on-chip Kerr combs remains challenging, as microresonator cavities have limited tuning range in their FSR and resonance frequency. Here, we take steps to overcome this limitation and demonstrate broadband frequency comb generation using a χ(3) resonator synchronously pumped by a tunable femtosecond pulse generator with on-chip amplitude and phase modulators. Notably, employing pulsed pumping overcomes limitations in Kerr comb generation typically seen in crystalline resonators from stimulated Raman scattering.

2.
Nano Lett ; 24(12): 3575-3580, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478720

RESUMO

Silicon vacancy centers (SiVs) in diamond have emerged as a promising platform for quantum sciences due to their excellent photostability, minimal spectral diffusion, and substantial zero-phonon line emission. However, enhancing their slow nanosecond excited-state lifetime by coupling to optical cavities remains an outstanding challenge, as current demonstrations are limited to ∼10-fold. Here, we couple negatively charged SiVs to sub-diffraction-limited plasmonic cavities and achieve an instrument-limited ≤8 ps lifetime, corresponding to a 135-fold spontaneous emission rate enhancement and a 19-fold photoluminescence enhancement. Nanoparticles are printed on ultrathin diamond membranes on gold films which create arrays of plasmonic nanogap cavities with ultrasmall volumes. SiVs implanted at 5 and 10 nm depths are examined to elucidate surface effects on their lifetime and brightness. The interplay between cavity, implantation depth, and ultrathin diamond membranes provides insights into generating ultrafast, bright SiV emission for next-generation diamond devices.

3.
Opt Express ; 32(3): 3619-3631, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297579

RESUMO

Thin-film lithium niobate (TFLN) is a promising electro-optic (EO) photonics platform with high modulation bandwidth, low drive voltage, and low optical loss. However, EO modulation in TFLN is known to relax on long timescales. Instead, thermo-optic heaters are often used for stable biasing, but heaters incur challenges with cross-talk, high power, and low bandwidth. Here, we characterize the low-frequency (1 mHz to 1 MHz) EO response of TFLN modulators, investigate the root cause of EO relaxation and demonstrate methods to improve bias stability. We show that relaxation-related effects can enhance EO modulation across a frequency band spanning 1kHz to 20kHz in our devices - a counter-intuitive result that can confound measurement of half-wave voltage (V π) in TFLN modulators. We also show that EO relaxation can be slowed by more than 104-fold through control of the LN-metal interface and annealing, offering progress toward lifetime-stable EO biasing. Such robust EO biasing would enable applications for TFLN devices where cross-talk, power, and bias bandwidth are critical, such as quantum devices, high-density integrated photonics, and communications.

4.
Nat Commun ; 14(1): 1496, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973272

RESUMO

Integrated electro-optic (EO) modulators are fundamental photonics components with utility in domains ranging from digital communications to quantum information processing. At telecommunication wavelengths, thin-film lithium niobate modulators exhibit state-of-the-art performance in voltage-length product (VπL), optical loss, and EO bandwidth. However, applications in optical imaging, optogenetics, and quantum science generally require devices operating in the visible-to-near-infrared (VNIR) wavelength range. Here, we realize VNIR amplitude and phase modulators featuring VπL's of sub-1 V ⋅ cm, low optical loss, and high bandwidth EO response. Our Mach-Zehnder modulators exhibit a VπL as low as 0.55 V ⋅ cm at 738 nm, on-chip optical loss of ~0.7 dB/cm, and EO bandwidths in excess of 35 GHz. Furthermore, we highlight the opportunities these high-performance modulators offer by demonstrating integrated EO frequency combs operating at VNIR wavelengths, with over 50 lines and tunable spacing, and frequency shifting of pulsed light beyond its intrinsic bandwidth (up to 7x Fourier limit) by an EO shearing method.

5.
Nat Commun ; 14(1): 11, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599838

RESUMO

Bridging the "terahertz gap" relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted terahertz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We propose a toolbox of basic blocks that produce broadband emission up to 680 GHz and far-field amplitudes of a few V m-1 with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ.

6.
Opt Express ; 30(19): 34149-34158, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242435

RESUMO

We measure the photothermal nonlinear response in suspended cubic silicon carbide (3C-SiC) and 3C-SiC-on-insulator (SiCOI) microring resonators. Bi-stability and thermo-optic hysteresis is observed in both types of resonators, with the suspended resonators showing a stronger response. A photothermal nonlinear index of 4.02×10-15 m2/W is determined for the suspended resonators, while the SiCOI resonators demonstrate one order of magnitude lower photothermal nonlinear index of 4.32×10-16 m2/W. Cavity absorption and temperature analysis suggest that the differences in thermal bi-stability are due to variations in waveguide absorption, likely from crystal defect density differences throughout the epitaxially grown layers. Furthermore, coupled mode theory model shows that the strength of the optical bi-stability, in suspended and SiCOI resonators can be engineered for high power or nonlinear applications.

7.
Opt Lett ; 47(11): 2830-2833, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648941

RESUMO

Existing nonlinear-optic implementations of pure, unfiltered heralded single-photon sources do not offer the scalability required for densely integrated quantum networks. Additionally, lithium niobate has hitherto been unsuitable for such use due to its material dispersion. We engineer the dispersion and the quasi-phasematching conditions of a waveguide in the rapidly emerging thin-film lithium niobate platform to generate spectrally separable photon pairs in the telecommunications band. Such photon pairs can be used as spectrally pure heralded single-photon sources in quantum networks. We estimate a heralded-state spectral purity of >94% based on joint spectral intensity measurements. Further, a joint spectral phase-sensitive measurement of the unheralded time-integrated second-order correlation function yields a heralded-state purity of (86±5)%.

8.
Nat Commun ; 13(1): 3170, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668071

RESUMO

Electro-optic modulators are essential for sensing, metrology and telecommunications. Most target fiber applications. Instead, metasurface-based architectures that modulate free-space light at gigahertz (GHz) speeds can boost flat optics technology by microwave electronics for active optics, diffractive computing or optoelectronic control. Current realizations are bulky or have low modulation efficiencies. Here, we demonstrate a hybrid silicon-organic metasurface platform that leverages Mie resonances for efficient electro-optic modulation at GHz speeds. We exploit quasi bound states in the continuum (BIC) that provide narrow linewidth (Q = 550 at [Formula: see text] nm), light confinement to the non-linear material, tunability by design and voltage and GHz-speed electrodes. Key to the achieved modulation of [Formula: see text] are molecules with r33 = 100 pm/V and optical field optimization for low-loss. We demonstrate DC tuning of the resonant frequency of quasi-BIC by [Formula: see text] 11 nm, surpassing its linewidth, and modulation up to 5 GHz (fEO,-3dB = 3 GHz). Guided mode resonances tune by [Formula: see text] 20 nm. Our hybrid platform may incorporate free-space nanostructures of any geometry or material, by application of the active layer post-fabrication.

9.
Nat Commun ; 13(1): 1851, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383188

RESUMO

Owing to its attractive optical and electronic properties, silicon carbide is an emerging platform for integrated photonics. However an integral component of the platform is missing-an electro-optic modulator, a device which encodes electrical signals onto light. As a non-centrosymmetric crystal, silicon carbide exhibits the Pockels effect, yet a modulator has not been realized since the discovery of this effect more than three decades ago. Here we design, fabricate, and demonstrate a Pockels modulator in silicon carbide. Specifically, we realize a waveguide-integrated, small form-factor, gigahertz-bandwidth modulator that operates using complementary metal-oxide-semiconductor (CMOS)-level voltages on a thin film of silicon carbide on insulator. Our device is fabricated using a CMOS foundry compatible fabrication process and features no signal degradation, no presence of photorefractive effects, and stable operation at high optical intensities (913 kW/mm2), allowing for high optical signal-to-noise ratios for modern communications. Our work unites Pockels electro-optics with a CMOS foundry compatible platform in silicon carbide.

10.
Opt Express ; 30(9): 14189-14201, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473168

RESUMO

Diamond offers good optical properties and hosts bright color centers with long spin coherence times. Recent advances in angled-etching of diamond, specifically with reactive ion beam angled etching (RIBAE), have led to successful demonstration of quantum photonic devices operating at visible wavelengths. However, larger devices operating at telecommunication wavelengths have been difficult to fabricate due to the increased mask erosion, arising from the increased size of devices requiring longer etch times. We evaluated different mask materials for RIBAE of diamond photonic crystal nanobeams and waveguides, and how their thickness, selectivity, aspect ratio and sidewall smoothness affected the resultant etch profiles and optical performance. We found that a thick hydrogen silesquioxane (HSQ) layer on a thin alumina adhesion layer provided the best etch profile and optical performance. The techniques explored in this work can also be adapted to other bulk materials that are not available heteroepitaxially or as thin films-on-insulator.

11.
Nature ; 599(7886): 587-593, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34819680

RESUMO

Efficient frequency shifting and beam splitting are important for a wide range of applications, including atomic physics1,2, microwave photonics3-6, optical communication7,8 and photonic quantum computing9-14. However, realizing gigahertz-scale frequency shifts with high efficiency, low loss and tunability-in particular using a miniature and scalable device-is challenging because it requires efficient and controllable nonlinear processes. Existing approaches based on acousto-optics6,15-17, all-optical wave mixing10,13,18-22 and electro-optics23-27 are either limited to low efficiencies or frequencies, or are bulky. Furthermore, most approaches are not bi-directional, which renders them unsuitable for frequency beam splitters. Here we demonstrate electro-optic frequency shifters that are controlled using only continuous and single-tone microwaves. This is accomplished by engineering the density of states of, and coupling between, optical modes in ultralow-loss waveguides and resonators in lithium niobate nanophotonics28. Our devices, consisting of two coupled ring-resonators, provide frequency shifts as high as 28 gigahertz with an on-chip conversion efficiency of approximately 90 per cent. Importantly, the devices can be reconfigured as tunable frequency-domain beam splitters. We also demonstrate a non-blocking and efficient swap of information between two frequency channels with one of the devices. Finally, we propose and demonstrate a scheme for cascaded frequency shifting that allows shifts of 119.2 gigahertz using a 29.8 gigahertz continuous and single-tone microwave signal. Our devices could become building blocks for future high-speed and large-scale classical information processors7,29 as well as emerging frequency-domain photonic quantum computers9,11,14.

12.
Opt Express ; 28(4): 4938-4949, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121724

RESUMO

We fabricate suspended single-mode optical waveguides and ring resonators in 3C silicon carbide (SiC) that operate at telecommunication wavelength, and leverage post-fabrication thermal annealing to minimize optical propagation losses. Annealed optical resonators yield quality factors of over 41,000, which corresponds to a propagation loss of 7 dB/cm, and is a significant improvement over the 24 dB/cm in the case of the non-annealed chip. This improvement is attributed to the enhancement of SiC crystallinity and a significant reduction of waveguide surface roughness, from 2.4 nm to below 1.7 nm. The latter is attributed to surface layer oxide growth during the annealing step. We confirm that the thermo-optic coefficient, an important parameter governing high-power and temperature-dependent performance of SiC, does not vary with annealing and is comparable to that of bulk SiC. Our annealing-based approach, which is especially suitable for suspended structures, offers a straightforward way to realize high-performance 3C-SiC integrated circuits.

13.
Opt Lett ; 44(16): 4056-4059, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415546

RESUMO

We experimentally demonstrate on-chip supercontinuum generation in the visible region in angle-etched diamond waveguides. We measure an output spectrum spanning 670-920 nm in a 5-mm-long waveguide using 100-fs pulses with 187 pJ of incident pulse energy. Our fabrication technique, combined with diamond's broad transparency window, offers a potential route toward broadband supercontinuum generation in the UV domain.

14.
Opt Lett ; 44(9): 2314-2317, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042212

RESUMO

Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly >10 dB/facet) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03-0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers.

15.
Nature ; 568(7752): 373-377, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858615

RESUMO

Optical frequency combs consist of equally spaced discrete optical frequency components and are essential tools for optical communication, precision metrology, timing and spectroscopy1-9. At present, combs with wide spectra are usually generated by mode-locked lasers10 or dispersion-engineered resonators with third-order Kerr nonlinearity11. An alternative method of comb production uses electro-optic (EO) phase modulation in a resonator with strong second-order nonlinearity, resulting in combs with excellent stability and controllability12-14. Previous EO combs, however, have been limited to narrow widths by a weak EO interaction strength and a lack of dispersion engineering in free-space systems. Here we overcome these limitations by realizing an integrated EO comb generator in a thin-film lithium niobate photonic platform that features a large EO response, ultralow optical loss and highly co-localized microwave and optical fields15, while enabling dispersion engineering. Our measured EO comb spans more frequencies than the entire telecommunications L-band (over 900 comb lines spaced about 10 gigahertz apart), and we show that future dispersion engineering can enable octave-spanning combs. Furthermore, we demonstrate the high tolerance of our comb generator to modulation frequency detuning, with frequency spacing finely controllable over seven orders of magnitude (10 hertz to 100 megahertz), and we use this feature to generate dual-frequency combs in a single resonator. Our results show that integrated EO comb generators are capable of generating wide and stable comb spectra. Their excellent reconfigurability is a powerful complement to integrated Kerr combs, enabling applications ranging from spectroscopy16 to optical communications8.

16.
Nature ; 562(7725): 101-104, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250251

RESUMO

Electro-optic modulators translate high-speed electronic signals into the optical domain and are critical components in modern telecommunication networks1,2 and microwave-photonic systems3,4. They are also expected to be building blocks for emerging applications such as quantum photonics5,6 and non-reciprocal optics7,8. All of these applications require chip-scale electro-optic modulators that operate at voltages compatible with complementary metal-oxide-semiconductor (CMOS) technology, have ultra-high electro-optic bandwidths and feature very low optical losses. Integrated modulator platforms based on materials such as silicon, indium phosphide or polymers have not yet been able to meet these requirements simultaneously because of the intrinsic limitations of the materials used. On the other hand, lithium niobate electro-optic modulators, the workhorse of the optoelectronic industry for decades9, have been challenging to integrate on-chip because of difficulties in microstructuring lithium niobate. The current generation of lithium niobate modulators are bulky, expensive, limited in bandwidth and require high drive voltages, and thus are unable to reach the full potential of the material. Here we overcome these limitations and demonstrate monolithically integrated lithium niobate electro-optic modulators that feature a CMOS-compatible drive voltage, support data rates up to 210 gigabits per second and show an on-chip optical loss of less than 0.5 decibels. We achieve this by engineering the microwave and photonic circuits to achieve high electro-optical efficiencies, ultra-low optical losses and group-velocity matching simultaneously. Our scalable modulator devices could provide cost-effective, low-power and ultra-high-speed solutions for next-generation optical communication networks and microwave photonic systems. Furthermore, our approach could lead to large-scale ultra-low-loss photonic circuits that are reconfigurable on a picosecond timescale, enabling a wide range of quantum and classical applications5,10,11 including feed-forward photonic quantum computation.

17.
Opt Lett ; 43(2): 318-321, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29328271

RESUMO

Using a high-Q diamond microresonator (Q>300,000) interfaced with high-power-handling directly-written doped-glass waveguides, we demonstrate a Raman laser in an integrated platform pumped in the near-visible. Both TM-to-TE and TE-to-TE lasing is observed, with a Raman lasing threshold as low as 20 mW and Stokes power of over 1 mW at 120 mW pump power. Stokes emission is tuned over a 150 nm (60 THz) bandwidth of approximately 875 nm wavelength, corresponding to 17.5% of the center frequency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...