Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680043

RESUMO

Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Lipopolissacarídeos/química , Yersinia pseudotuberculosis/química , Interações Hospedeiro-Patógeno/genética , Humanos , Lipídeo A/genética , Lipídeo A/imunologia , Lipopolissacarídeos/genética , Lipopolissacarídeos/imunologia , Estrutura Molecular , Relação Estrutura-Atividade , Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/patogenicidade
2.
Science ; 372(6547): 1169-1175, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34112687

RESUMO

Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.


Assuntos
Antibacterianos/farmacologia , Cistationina gama-Liase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Biofilmes , Cristalografia por Raios X , Cistationina gama-Liase/química , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Descoberta de Drogas , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Tolerância a Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento
3.
Proc Natl Acad Sci U S A ; 117(38): 23565-23570, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900959

RESUMO

l-cysteine is the source of all bacterial sulfurous biomolecules. However, the cytoplasmic level of l-cysteine must be tightly regulated due to its propensity to reduce iron and drive damaging Fenton chemistry. It has been proposed that in Escherichia coli the component of cytochrome bd-I terminal oxidase, the CydDC complex, shuttles excessive l-cysteine from the cytoplasm to the periplasm, thereby maintaining redox homeostasis. Here, we provide evidence for an alternative function of CydDC by demonstrating that the cydD phenotype, unlike that of the bona fide l-cysteine exporter eamA, parallels that of the l-cystine importer tcyP. Chromosomal induction of eamA, but not of cydDC, from a strong pLtetO-1 promoter (Ptet) leads to the increased level of extracellular l-cysteine, whereas induction of cydDC or tcyP causes the accumulation of cytoplasmic l-cysteine. Congruently, inactivation of cydD renders cells resistant to hydrogen peroxide and to aminoglycoside antibiotics. In contrast, induction of cydDC sensitizes cells to oxidative stress and aminoglycosides, which can be suppressed by eamA overexpression. Furthermore, inactivation of the ferric uptake regulator (fur) in Ptet-cydDC or Ptet-tcyP cells results in dramatic loss of survival, whereas catalase (katG) overexpression suppresses the hypersensitivity of both strains to H2O2 These results establish CydDC as a reducer of cytoplasmic cystine, as opposed to an l-cysteine exporter, and further elucidate a link between oxidative stress, antibiotic resistance, and sulfur metabolism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cisteína/metabolismo , Grupo dos Citocromos b/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , NADH NADPH Oxirredutases/metabolismo , Estresse Oxidativo/fisiologia , Oxirredutases/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Grupo dos Citocromos b/genética , Citoplasma/enzimologia , Citoplasma/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Proteínas de Escherichia coli/genética , Peróxido de Hidrogênio/metabolismo , NADH NADPH Oxirredutases/genética , Estresse Oxidativo/genética , Oxirredutases/genética , Periplasma/metabolismo
4.
Infect Immun ; 87(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30323021

RESUMO

The biological mediator hydrogen sulfide (H2S) is produced by bacteria and has been shown to be cytoprotective against oxidative stress and to increase the sensitivity of various bacteria to a range of antibiotic drugs. Here we evaluated whether bacterial H2S provides resistance against the immune response, using two bacterial species that are common sources of nosocomial infections, Escherichia coli and Staphylococcus aureus Elevations in H2S levels increased the resistance of both species to immune-mediated killing. Clearances of infections with wild-type and genetically H2S-deficient E. coli and S. aureus were compared in vitro and in mouse models of abdominal sepsis and burn wound infection. Also, inhibitors of H2S-producing enzymes were used to assess bacterial killing by leukocytes. We found that inhibition of bacterial H2S production can increase the susceptibility of both bacterial species to rapid killing by immune cells and can improve bacterial clearance after severe burn, an injury that increases susceptibility to opportunistic infections. These findings support the role of H2S as a bacterial defense mechanism against the host response and implicate bacterial H2S inhibition as a potential therapeutic intervention in the prevention or treatment of infections.


Assuntos
Infecções por Escherichia coli/patologia , Escherichia coli/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Sulfeto de Hidrogênio/metabolismo , Infecções Estafilocócicas/patologia , Staphylococcus aureus/crescimento & desenvolvimento , Animais , Escherichia coli/imunologia , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Evasão da Resposta Imune , Leucócitos/imunologia , Masculino , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Sepse/microbiologia , Sepse/patologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia
5.
Proc Natl Acad Sci U S A ; 114(23): 6022-6027, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533366

RESUMO

Endogenous hydrogen sulfide (H2S) renders bacteria highly resistant to oxidative stress, but its mechanism remains poorly understood. Here, we report that 3-mercaptopyruvate sulfurtransferase (3MST) is the major source of endogenous H2S in Escherichia coli Cellular resistance to H2O2 strongly depends on the activity of mstA, a gene that encodes 3MST. Deletion of the ferric uptake regulator (Fur) renders ∆mstA cells hypersensitive to H2O2 Conversely, induction of chromosomal mstA from a strong pLtetO-1 promoter (P tet -mstA) renders ∆fur cells fully resistant to H2O2 Furthermore, the endogenous level of H2S is reduced in ∆fur or ∆sodA ∆sodB cells but restored after the addition of an iron chelator dipyridyl. Using a highly sensitive reporter of the global response to DNA damage (SOS) and the TUNEL assay, we show that 3MST-derived H2S protects chromosomal DNA from oxidative damage. We also show that the induction of the CysB regulon in response to oxidative stress depends on 3MST, whereas the CysB-regulated l-cystine transporter, TcyP, plays the principle role in the 3MST-mediated generation of H2S. These findings led us to propose a model to explain the interplay between l-cysteine metabolism, H2S production, and oxidative stress, in which 3MST protects E. coli against oxidative stress via l-cysteine utilization and H2S-mediated sequestration of free iron necessary for the genotoxic Fenton reaction.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Sulfurtransferases/metabolismo , Antibacterianos/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Dano ao DNA/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sulfurtransferases/fisiologia
6.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3019-3029, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27612662

RESUMO

BACKGROUND: Using Bacillus anthracis as a model gram-positive bacterium, we investigated the effects of host protein S-nitrosylation during bacterial infection. B. anthracis possesses a bacterial nitric oxide synthase (bNOS) that is important for its virulence and survival. However, the role of S-nitrosylation of host cell proteins during B. anthracis infection has not been determined. METHODS: Nitrosoproteomic analysis of human small airway epithelial cells (HSAECs) infected with toxigenic B. anthracis Sterne was performed, identifying peroxiredoxin 1 (Prx1) as one predominant target. Peroxidase activity of Prx during infection was measured using 2-Cys-Peroxiredoxin activity assay. Chaperone activity of S-nitrosylated Prx1 was measured by insulin aggregation assay, and analysis of formation of multimeric species using Native PAGE. Griess assay and DAF-2DA fluorescence assay were used to measure NO production. Cell viability was measured using the Alamar Blue assay and the ATPlite assay (Perkin Elmer). RESULTS: S-nitrosylation of Prx1 in Sterne-infected HSAECs leads to a decrease in its peroxidase activity while enhancing its chaperone function. Treatment with bNOS inhibitor, or infection with bNOS deletion strain, reduces S-nitrosylation of Prx1 and decreases host cell survival. Consistent with this, siRNA knockdown of Prx1 lowers bNOS-dependent protection of HSAEC viability. CONCLUSIONS: Anthrax infection results in S-nitrosylation of multiple host proteins, including Prx1. The nitrosylation-dependent decrease in peroxidase activity of Prx1 and increase in its chaperone activity is one factor contributing to enhancing infected cell viability. GENERAL SIGNIFICANCE: These results provide a new venue of mechanistic investigation for inhalational anthrax that could lead to novel and potentially effective countermeasures.


Assuntos
Antraz/microbiologia , Antraz/patologia , Bacillus anthracis/patogenicidade , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Pulmão/patologia , Peroxirredoxinas/metabolismo , Bacillus anthracis/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Deleção de Genes , Humanos , Espectrometria de Massas , Modelos Biológicos , Chaperonas Moleculares/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Nitrosação , Peroxidase/metabolismo , Reprodutibilidade dos Testes
7.
PLoS One ; 7(6): e39115, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720044

RESUMO

NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS). Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine) in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown) glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine) is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS structural elements associated with glutamine-utilizing capabilities.


Assuntos
Amida Sintases/metabolismo , Amônia/metabolismo , Glutamina/metabolismo , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Thermus thermophilus/genética
8.
Science ; 334(6058): 986-90, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22096201

RESUMO

Many prokaryotic species generate hydrogen sulfide (H(2)S) in their natural environments. However, the biochemistry and physiological role of this gas in nonsulfur bacteria remain largely unknown. Here we demonstrate that inactivation of putative cystathionine ß-synthase, cystathionine γ-lyase, or 3-mercaptopyruvate sulfurtransferase in Bacillus anthracis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli suppresses H(2)S production, rendering these pathogens highly sensitive to a multitude of antibiotics. Exogenous H(2)S suppresses this effect. Moreover, in bacteria that normally produce H(2)S and nitric oxide, these two gases act synergistically to sustain growth. The mechanism of gas-mediated antibiotic resistance relies on mitigation of oxidative stress imposed by antibiotics.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Sulfeto de Hidrogênio/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/crescimento & desenvolvimento , Bacillus anthracis/metabolismo , Bactérias/crescimento & desenvolvimento , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Quebras de DNA de Cadeia Dupla , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Sulfeto de Hidrogênio/farmacologia , Dados de Sequência Molecular , Óxido Nítrico/metabolismo , Estresse Oxidativo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Sulfurtransferases/antagonistas & inibidores , Sulfurtransferases/genética , Sulfurtransferases/metabolismo
9.
Cell ; 146(4): 533-43, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21854980

RESUMO

Frequent codirectional collisions between the replisome and RNA polymerase (RNAP) are inevitable because the rate of replication is much faster than that of transcription. Here we show that, in E. coli, the outcome of such collisions depends on the productive state of transcription elongation complexes (ECs). Codirectional collisions with backtracked (arrested) ECs lead to DNA double-strand breaks (DSBs), whereas head-on collisions do not. A mechanistic model is proposed to explain backtracking-mediated DSBs. We further show that bacteria employ various strategies to avoid replisome collisions with backtracked RNAP, the most general of which is translation that prevents RNAP backtracking. If translation is abrogated, DSBs are suppressed by elongation factors that either prevent backtracking or reactivate backtracked ECs. Finally, termination factors also contribute to genomic stability by removing arrested ECs. Our results establish RNAP backtracking as the intrinsic hazard to chromosomal integrity and implicate active ribosomes and other anti-backtracking mechanisms in genome maintenance.


Assuntos
Replicação do DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Instabilidade Genômica , Transcrição Gênica , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Ribossomos/metabolismo
10.
Science ; 325(5946): 1380-4, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19745150

RESUMO

Bacterial nitric oxide synthases (bNOS) are present in many Gram-positive species and have been demonstrated to synthesize NO from arginine in vitro and in vivo. However, the physiological role of bNOS remains largely unknown. We show that NO generated by bNOS increases the resistance of bacteria to a broad spectrum of antibiotics, enabling the bacteria to survive and share habitats with antibiotic-producing microorganisms. NO-mediated resistance is achieved through both the chemical modification of toxic compounds and the alleviation of the oxidative stress imposed by many antibiotics. Our results suggest that the inhibition of NOS activity may increase the effectiveness of antimicrobial therapy.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Acriflavina/metabolismo , Acriflavina/farmacologia , Antibacterianos/metabolismo , Antibiose , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/genética , Bacillus anthracis/crescimento & desenvolvimento , Bacillus anthracis/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Cefuroxima/farmacologia , Mutação , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/genética , Estresse Oxidativo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Piocianina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Microbiologia do Solo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Superóxido Dismutase/metabolismo
11.
Proc Natl Acad Sci U S A ; 105(3): 1009-13, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18215992

RESUMO

Phagocytes generate nitric oxide (NO) and other reactive oxygen and nitrogen species in large quantities to combat infecting bacteria. Here, we report the surprising observation that in vivo survival of a notorious pathogen-Bacillus anthracis-critically depends on its own NO-synthase (bNOS) activity. Anthrax spores (Sterne strain) deficient in bNOS lose their virulence in an A/J mouse model of systemic infection and exhibit severely compromised survival when germinating within macrophages. The mechanism underlying bNOS-dependent resistance to macrophage killing relies on NO-mediated activation of bacterial catalase and suppression of the damaging Fenton reaction. Our results demonstrate that pathogenic bacteria use their own NO as a key defense against the immune oxidative burst, thereby establishing bNOS as an essential virulence factor. Thus, bNOS represents an attractive antimicrobial target for treatment of anthrax and other infectious diseases.


Assuntos
Bacillus anthracis/patogenicidade , Macrófagos/citologia , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Animais , Antraz/metabolismo , Antraz/patologia , Linhagem Celular , Sobrevivência Celular , Camundongos , Estresse Oxidativo , Taxa de Sobrevida , Fatores de Tempo , Virulência
12.
Genome Biol ; 8(5): R87, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17519022

RESUMO

We have developed a new microarray-based genetic technique, named MGK (Monitoring of Gene Knockouts), for genome-wide identification of conditionally essential genes. MGK identified bacterial genes that are critical for fitness in the absence of aromatic amino acids, and was further applied to identify genes whose inactivation causes bacterial cell death upon exposure to the bacteriostatic antibiotic chloramphenicol. Our findings suggest that MGK can serve as a robust tool in functional genomics studies.


Assuntos
Bactérias/crescimento & desenvolvimento , Inativação Gênica , Genes Bacterianos/fisiologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Cloranfenicol/farmacologia , Deleção de Genes , Genoma Bacteriano , Genômica/métodos
13.
J Bacteriol ; 188(8): 3012-23, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16585762

RESUMO

Biosynthesis of NAD(P) cofactors is of special importance for cyanobacteria due to their role in photosynthesis and respiration. Despite significant progress in understanding NAD(P) biosynthetic machinery in some model organisms, relatively little is known about its implementation in cyanobacteria. We addressed this problem by a combination of comparative genome analysis with verification experiments in the model system of Synechocystis sp. strain PCC 6803. A detailed reconstruction of the NAD(P) metabolic subsystem using the SEED genomic platform (http://theseed.uchicago.edu/FIG/index.cgi) helped us accurately annotate respective genes in the entire set of 13 cyanobacterial species with completely sequenced genomes available at the time. Comparative analysis of operational variants implemented in this divergent group allowed us to elucidate both conserved (de novo and universal pathways) and variable (recycling and salvage pathways) aspects of this subsystem. Focused genetic and biochemical experiments confirmed several conjectures about the key aspects of this subsystem. (i) The product of the slr1691 gene, a homolog of Escherichia coli gene nadE containing an additional nitrilase-like N-terminal domain, is a NAD synthetase capable of utilizing glutamine as an amide donor in vitro. (ii) The product of the sll1916 gene, a homolog of E. coli gene nadD, is a nicotinic acid mononucleotide-preferring adenylyltransferase. This gene is essential for survival and cannot be compensated for by an alternative nicotinamide mononucleotide (NMN)-preferring adenylyltransferase (slr0787 gene). (iii) The product of the slr0788 gene is a nicotinamide-preferring phosphoribosyltransferase involved in the first step of the two-step non-deamidating utilization of nicotinamide (NMN shunt). (iv) The physiological role of this pathway encoded by a conserved gene cluster, slr0787-slr0788, is likely in the recycling of endogenously generated nicotinamide, as supported by the inability of this organism to utilize exogenously provided niacin. Positional clustering and the co-occurrence profile of the respective genes across a diverse collection of cellular organisms provide evidence of horizontal transfer events in the evolutionary history of this pathway.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Genoma Bacteriano , NAD/biossíntese , Amida Sintases/genética , Amida Sintases/metabolismo , Escherichia coli , Transferência Genética Horizontal , Glutamina/metabolismo , Modelos Biológicos , Família Multigênica , Niacina/metabolismo , Niacinamida/metabolismo , Mononucleotídeo de Nicotinamida/análogos & derivados , Mononucleotídeo de Nicotinamida/genética , Mononucleotídeo de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferase , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Sintenia
14.
FEMS Microbiol Lett ; 245(2): 315-9, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15837388

RESUMO

A procedure for high-efficiency gene inactivation in Bacillus anthracis has been developed. It is based on a highly temperature-sensitive plasmid vector carrying kanamycin resistance cassette surrounded by DNA fragments flanking the desired insertion site. The approach was tested by constructing glutamate racemase E1 (racE1), glutamate racemase E2 (racE2) and comEC knock-out mutants of B. anthracis strain DeltaANR. Allelic replacements were observed at high frequencies, ranging from approximately 0.5% for racE2 up to 50% for racE1 and comEC. The system can be used for genetic validation of potential drug targets.


Assuntos
Bacillus anthracis/genética , Mutagênese Insercional/métodos , Isomerases de Aminoácido/genética , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Resistência a Canamicina/genética , Metiltransferases/genética , Dados de Sequência Molecular , Plasmídeos/genética , Racemases e Epimerases/genética , Recombinação Genética , Análise de Sequência de DNA
15.
Cell ; 111(5): 747-56, 2002 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-12464185

RESUMO

Thiamin and riboflavin are precursors of essential coenzymes-thiamin pyrophosphate (TPP) and flavin mononucleotide (FMN)/flavin adenine dinucleotide (FAD), respectively. In Bacillus spp, genes responsible for thiamin and riboflavin biosynthesis are organized in tightly controllable operons. Here, we demonstrate that the feedback regulation of riboflavin and thiamin genes relies on a novel transcription attenuation mechanism. A unique feature of this mechanism is the formation of specific complexes between a conserved leader region of the cognate RNA and FMN or TPP. In each case, the complex allows the termination hairpin to form and interrupt transcription prematurely. Thus, sensing small molecules by nascent RNA controls transcription elongation of riboflavin and thiamin operons and possibly other bacterial operons as well.


Assuntos
Bactérias/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano , Transcrição Gênica , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Sequência de Bases , Sequência Conservada , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Técnicas In Vitro , Modelos Genéticos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos Antissenso/farmacologia , Óperon , Mutação Puntual , Riboflavina/biossíntese , Riboflavina/metabolismo , Deleção de Sequência , Tiamina/biossíntese , Tiamina/metabolismo
16.
J Bacteriol ; 184(16): 4555-72, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12142426

RESUMO

Novel drug targets are required in order to design new defenses against antibiotic-resistant pathogens. Comparative genomics provides new opportunities for finding optimal targets among previously unexplored cellular functions, based on an understanding of related biological processes in bacterial pathogens and their hosts. We describe an integrated approach to identification and prioritization of broad-spectrum drug targets. Our strategy is based on genetic footprinting in Escherichia coli followed by metabolic context analysis of essential gene orthologs in various species. Genes required for viability of E. coli in rich medium were identified on a whole-genome scale using the genetic footprinting technique. Potential target pathways were deduced from these data and compared with a panel of representative bacterial pathogens by using metabolic reconstructions from genomic data. Conserved and indispensable functions revealed by this analysis potentially represent broad-spectrum antibacterial targets. Further target prioritization involves comparison of the corresponding pathways and individual functions between pathogens and the human host. The most promising targets are validated by direct knockouts in model pathogens. The efficacy of this approach is illustrated using examples from metabolism of adenylate cofactors NAD(P), coenzyme A, and flavin adenine dinucleotide. Several drug targets within these pathways, including three distantly related adenylyltransferases (orthologs of the E. coli genes nadD, coaD, and ribF), are discussed in detail.


Assuntos
Coenzima A/biossíntese , Escherichia coli/metabolismo , Flavina-Adenina Dinucleotídeo/biossíntese , NADP/biossíntese , Antibacterianos , Pegada de DNA , Elementos de DNA Transponíveis , Desenho de Fármacos , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Mononucleotídeo de Flavina/biossíntese , Genoma Bacteriano , Mutagênese Insercional , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...