Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Antimicrob Agents Chemother ; 67(4): e0162322, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36988461

RESUMO

Fosmanogepix (FMGX, APX001), a first-in-class, intravenous (i.v.) and oral (p.o.) antifungal prodrug candidate is currently in clinical development for the treatment of invasive fungal infections. Manogepix (MGX, APX001A), the active moiety of FMGX, interferes with cell wall synthesis by targeting fungal glycosylphosphatidylinositol-anchored cell wall transfer protein 1, thereby causing loss of cell viability. Data from two phase 1, placebo-controlled, single-ascending dose (SAD) and multiple-ascending dose (MAD) studies evaluating safety, tolerability, and pharmacokinetics of FMGX (doses up to 1,000 mg, i.v. and p.o.) are presented. Eligible participants were healthy adults (aged 18 to 55 years) randomized to receive either FMGX or placebo. Across both phase 1 studies, 151 of 154 participants (aged 23 to 35 years; FMGX: 116, placebo: 38) completed the study. Administration of FMGX i.v. demonstrated linear- and dose-proportional pharmacokinetics of MGX in terms of geometric mean maximum concentration of drug in serum (Cmax) (SAD: 0.16 to 12.0 µg/mL, dose: 10 to 1,000 mg; MAD: 0.67 to 15.4 µg/mL, dose: 50 to 600 mg) and area under the concentration-time curve (AUC) (SAD: 4.05 to 400, MAD: 6.39 to 245 µg · h/mL). With single and repeat p.o., dose-proportional increases in Cmax (SAD: 1.30 to 6.41 µg/mL, dose: 100 to 500 mg; MAD: 6.18 to 21.3 µg/mL, dose: 500 to 1,000 mg) and AUC (SAD: 87.5 to 205, MAD: 50.8 to 326 µg · h/mL) were also observed, with high oral bioavailability (90.6% to 101.2%). Administration of FMGX p.o. under post cibum conditions improved tolerability versus ante cibum conditions. No severe treatment-emergent adverse events (TEAEs), serious AEs, or withdrawals due to a drug-related TEAEs were reported with single or multiple i.v. and p.o. doses. Preclinical target exposures were achieved and were not accompanied by any serious/unexpected concerns with generally safe and well-tolerated dose regimens.


Assuntos
Antifúngicos , Infecções Fúngicas Invasivas , Adulto , Humanos , Antifúngicos/efeitos adversos , Voluntários Saudáveis , Disponibilidade Biológica , Infecções Fúngicas Invasivas/tratamento farmacológico , Área Sob a Curva , Método Duplo-Cego , Relação Dose-Resposta a Droga
2.
J Fungi (Basel) ; 8(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36294667

RESUMO

Invasive fungal infections have mortality rates of 30-90%, depending on patient co-morbidities and the causative pathogen. The frequent emergence of drug resistance reduces the efficacy of currently approved treatment options, highlighting an urgent need for antifungals with new modes of action. Addressing this need, fosmanogepix (N-phosphonooxymethylene prodrug of manogepix; MGX) is the first in a new class of gepix drugs, and acts as a broad-spectrum, orally bioavailable inhibitor of the essential fungal glycosylphosphatidylinositol (GPI) acyltransferase Gwt1. MGX inhibits the growth of diverse fungal pathogens and causes accumulation of immature GPI-anchored proteins in the fungal endoplasmic reticulum. Relevant to the ongoing clinical development of fosmanogepix, we report a synergistic, fungicidal interaction between MGX and inhibitors of the protein phosphatase calcineurin against important human fungal pathogens. To investigate this synergy further, we evaluated a library of 124 conditional expression mutants covering 95% of the genes encoding proteins involved in GPI-anchor biosynthesis or proteins predicted to be GPI-anchored. Strong negative chemical-genetic interactions between the calcineurin inhibitor FK506 and eleven GPI-anchor biosynthesis genes were identified, indicating that calcineurin signalling is required for fungal tolerance to not only MGX, but to inhibition of the GPI-anchor biosynthesis pathway more broadly. Depletion of these GPI-anchor biosynthesis genes, like MGX treatment, also exposed fungal cell wall (1→3)-ß-D-glucans. Taken together, these findings suggest the increased risk of invasive fungal infections associated with use of calcineurin inhibitors as immunosuppressants may be mitigated by their synergistic fungicidal interaction with (fos)manogepix and its ability to enhance exposure of immunostimulatory glucans.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33722886

RESUMO

We evaluated the in vitro activity of manogepix against Fusarium oxysporum and Fusarium solani species complex (FOSC and FSSC, respectively) isolates per CLSI document M38 broth microdilution methods. Manogepix demonstrated activity against both FOSC (MEC [minimum effective concentration] range, ≤0.015 to 0.03 µg/ml; MIC50 range, ≤0.015 to 0.125 µg/ml) and FSSC (MEC, ≤0.015 µg/ml; MIC50, ≤0.015 to 0.25 µg/ml). Amphotericin B was also active (MIC, 0.25 to 4 µg/ml), whereas the triazoles (MIC, 1 to >16 µg/ml) and micafungin (MEC, ≥8 µg/ml) had limited activity.


Assuntos
Fusarium , Aminopiridinas , Antifúngicos/farmacologia , Isoxazóis , Testes de Sensibilidade Microbiana
4.
Artigo em Inglês | MEDLINE | ID: mdl-31818813

RESUMO

There are limited treatment options for immunosuppressed patients with lethal invasive fungal infections due to Fusarium and Scedosporium Manogepix (MGX; APX001A) is a novel antifungal that targets the conserved Gwt1 enzyme required for localization of glycosylphosphatidylinositol-anchored mannoproteins in fungi. We evaluated the in vitro activity of MGX and the efficacy of the prodrug fosmanogepix (APX001) in immunosuppressed murine models of hematogenously disseminated fusariosis and pulmonary scedosporiosis. The MGX minimum effective concentration (MEC) for Scedosporium isolates was 0.03 µg/ml and ranged from 0.015 to 0.03 µg/ml for Fusarium isolates. In the scedosporiosis model, treatment of mice with 78 mg/kg and 104 mg/kg of body weight fosmanogepix, along with 1-aminobenzotriazole (ABT) to enhance the serum half-life of MGX, significantly increased median survival time versus placebo from 7 days to 13 and 11 days, respectively. Furthermore, administration of 104 mg/kg fosmanogepix resulted in an ∼2-log10 reduction in lung, kidney, or brain conidial equivalents/gram tissue (CE). Similarly, in the fusariosis model, 78 mg/kg and 104 mg/kg fosmanogepix plus ABT enhanced median survival time from 7 days to 12 and 10 days, respectively. A 2- to 3-log10 reduction in kidney and brain CE was observed. In both models, reduction in tissue fungal burden was corroborated with histopathological data, with target organs showing reduced or no abscesses in fosmanogepix-treated mice. Survival and tissue clearance were comparable to a clinically relevant high dose of liposomal amphotericin B (10 to 15 mg/kg). Our data support the continued development of fosmanogepix as a first-in-class treatment for infections caused by these rare molds.


Assuntos
Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Fusariose/tratamento farmacológico , Fusarium/efeitos dos fármacos , Hospedeiro Imunocomprometido , Infecções Fúngicas Invasivas/tratamento farmacológico , Isoxazóis/farmacologia , Scedosporium/efeitos dos fármacos , Aminopiridinas/sangue , Aminopiridinas/farmacocinética , Animais , Antifúngicos/sangue , Antifúngicos/farmacocinética , Disponibilidade Biológica , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/microbiologia , Esquema de Medicação , Combinação de Medicamentos , Fusariose/imunologia , Fusariose/microbiologia , Fusariose/mortalidade , Fusarium/crescimento & desenvolvimento , Fusarium/imunologia , Meia-Vida , Humanos , Infecções Fúngicas Invasivas/imunologia , Infecções Fúngicas Invasivas/microbiologia , Infecções Fúngicas Invasivas/mortalidade , Isoxazóis/sangue , Isoxazóis/farmacocinética , Rim/efeitos dos fármacos , Rim/imunologia , Rim/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Pró-Fármacos , Scedosporium/crescimento & desenvolvimento , Scedosporium/imunologia , Análise de Sobrevida , Triazóis/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31427304

RESUMO

The emerging pathogenic yeast Candida auris is associated with antifungal resistance and high mortality. The novel antifungal agent manogepix (APX001A) inhibits glycosylphosphatidylinositol-anchored protein maturation and has demonstrated activity against numerous pathogenic fungi, including C. auris Our objective was to evaluate the in vivo efficacy of fosmanogepix, the N-phosphonooxymethyl prodrug (APX001), following delayed initiation of therapy in a murine model of C. auris invasive candidiasis. Neutropenic mice were intravenously infected with a fluconazole-resistant clinical isolate of C. auris Twenty-four hours postinoculation, treatment began with vehicle control, fosmanogepix (104 and 130 mg/kg of body weight by intraperitoneal injection three times daily, or intraperitoneal 260 mg/kg twice daily), fluconazole (20 mg/kg by oral gavage once daily), or caspofungin (intraperitoneal 10 mg/kg once daily) and continued for 7 days. Fungal burden was assessed via colony count in the kidneys and brains on day 8 in the fungal burden arm and on day 21 as the mice became moribund in the survival arm. Significant improvements in survival were observed in each group administered fosmanogepix and caspofungin. Similarly, reductions in fungal burden were also observed in both the kidneys and brains of mice treated with the highest dose of fosmanogepix in the fungal burden arm and in each fosmanogepix group and with caspofungin in the survival arm. In contrast, no improvements in survival or reductions in fungal burden were observed in mice treated with fluconazole. These results demonstrate that fosmanogepix is effective in vivo against fluconazole-resistant C. auris even when therapy is delayed.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase Invasiva/tratamento farmacológico , Animais , Candidíase Invasiva/microbiologia , Caspofungina/farmacologia , Modelos Animais de Doenças , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Camundongos , Testes de Sensibilidade Microbiana
6.
Artigo em Inglês | MEDLINE | ID: mdl-30455236

RESUMO

Invasive pulmonary aspergillosis (IPA) due to Aspergillus fumigatus is a serious fungal infection in the immunosuppressed patient population. Despite the introduction of new antifungal agents, mortality rates remain high, and new treatments are needed. The novel antifungal APX001A targets the conserved Gwt1 enzyme required for the localization of glycosylphosphatidylinositol-anchored mannoproteins in fungi. We evaluated the in vitro activity of APX001A against A. fumigatus and the in vivo activity of its prodrug APX001 in an immunosuppressed mouse model of IPA. APX001A inhibited the growth of A. fumigatus with a minimum effective concentration of 0.03 µg/ml. The use of 50 mg/kg 1-aminobenzotriazole (ABT), a suicide inhibitor of cytochrome P450 enzymes, enhanced APX001A exposures (area under the time-concentration curve [AUC]) 16- to 18-fold and enhanced serum half-life from ∼1 to 9 h, more closely mimicking human pharmacokinetics. We evaluated the efficacy of APX001 (with ABT) in treating murine IPA compared to posaconazole treatment. Treatment of mice with 78 mg/kg once daily (QD), 78 mg/kg twice daily, or 104 mg/kg QD APX001 significantly enhanced the median survival time and prolonged day 21 postinfection overall survival compared to the placebo. Furthermore, administration of APX001 resulted in a significant reduction in lung fungal burden (4.2 to 7.6 log10 conidial equivalents/g of tissue) versus the untreated control and resolved the infection, as judged by histopathological examination. The observed survival and tissue clearance were comparable to a clinically relevant posaconazole dose. These results warrant the continued development of APX001 as a broad-spectrum, first-in-class treatment of invasive fungal infections.


Assuntos
Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Animais , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hospedeiro Imunocomprometido , Aspergilose Pulmonar Invasiva/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Triazóis/uso terapêutico
7.
Artigo em Inglês | MEDLINE | ID: mdl-29311065

RESUMO

Candida auris is an emerging multidrug-resistant yeast that has been responsible for invasive infections associated with high morbidity and mortality. C. auris strains often demonstrate high fluconazole and amphotericin B MIC values, and some strains are resistant to all three major antifungal classes. We evaluated the susceptibility of 16 C. auris clinical strains, isolated from a wide geographical area, to 10 antifungal agents, including APX001A, a novel agent that inhibits the fungal protein Gwt1 (glycosylphosphatidylinositol-anchored wall transfer protein 1). APX001A demonstrated significantly lower MIC50 and MIC90 values (0.004 and 0.031 µg/ml, respectively) than all other agents tested. The efficacy of the prodrug APX001 was evaluated in an immunocompromised murine model of disseminated C. auris infection. Significant efficacy (80 to 100% survival) was observed in all three APX001 treatment groups versus 50% survival for the anidulafungin treatment group. In addition, APX001 showed a significant log reduction in CFU counts in kidney, lung, and brain tissue (1.03 to 1.83) versus the vehicle control. Anidulafungin also showed a significant log reduction in CFU in the kidneys and lungs (1.5 and 1.62, respectively) but did not impact brain CFU. These data support further clinical evaluation of this new antifungal agent.


Assuntos
Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/imunologia , Hospedeiro Imunocomprometido , Isoxazóis/farmacologia , Pró-Fármacos/farmacologia , Aminopiridinas/metabolismo , Anfotericina B/farmacologia , Anidulafungina/farmacologia , Animais , Antifúngicos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/microbiologia , Candida/crescimento & desenvolvimento , Candidíase/microbiologia , Candidíase/mortalidade , Relação Dose-Resposta a Droga , Equinocandinas/farmacologia , Feminino , Fluconazol/farmacologia , Isoxazóis/metabolismo , Rim/efeitos dos fármacos , Rim/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Pró-Fármacos/metabolismo , Análise de Sobrevida
8.
Urology ; 85(3): 517-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25733259

RESUMO

OBJECTIVE: To examine the levels of Oxalobacter formigenes in probiotic supplements marketed by PRO-LAB, Ltd, Toronto, Canada, and capsules of Oxalo purchased from Sanzyme Ltd, Hyderabad, India, and to measure the ability of these preparations to degrade oxalate in vitro. METHODS: Probiotic supplements and pure cultures of O. formigenes were cultured in a number of media containing oxalate. Optical density at 595 nm (OD595) was used to measure bacterial growth, and ion chromatography was used to measure loss of oxalate in culture media. O. formigenes-specific and degenerate Lactobacillus primers to the oxalate decarboxylase gene (oxc) were used in polymerase chain reaction (PCR). RESULTS: Incubating probiotic supplements in different media did not result in the growth of oxalate-degrading organisms. PCR indicated the absence of organisms harboring the oxc gene. Culture and 16S ribosomal ribonucleic acid gene sequencing indicated the PRO-LAB supplement contained viable Lactococcus lactis subsp. lactis (GenBank accession no. KJ095656.1), whereas Oxalo contained several Bacillus species and Lactobacillus plantarum. CONCLUSION: The probiotic supplement sold over the Internet by PRO-LAB Ltd and Sanzyme Ltd did not contain identifiable O. formigenes or viable oxalate-degrading organisms, and they are unlikely to be of benefit to calcium oxalate kidney stone patients.


Assuntos
Suplementos Nutricionais , Cálculos Renais/terapia , Oxalatos/metabolismo , Oxalobacter formigenes/metabolismo , Probióticos/uso terapêutico , Técnicas Bacteriológicas , Oxalobacter formigenes/genética
9.
Diagn Microbiol Infect Dis ; 81(2): 112-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25488274

RESUMO

The in vitro activity and spectrum of tedizolid and comparators were analyzed against 6884 Gram-positive clinical isolates collected from multiple US and European sites as part of the Surveillance of Tedizolid Activity and Resistance Program in 2011 and 2012. Organisms included 4499 Staphylococcus aureus, 537 coagulase-negative staphylococci (CoNS), 873 enterococci, and 975 ß-hemolytic streptococci. The MIC values that inhibited 90% of the isolates within each group (MIC90) were 0.25 µg/mL for Staphylococcus epidermidis and ß-hemolytic streptococci and 0.5 µg/mL for S. aureus, other CoNS, and enterococci. Of 16 isolates with elevated tedizolid or linezolid MIC values (intermediate or resistant isolates), 10 had mutations in the genes encoding 23S rRNA (primarily G2576T), 5 had mutations in the genes encoding ribosomal proteins L3 or L4, and 5 carried the cfr multidrug resistance gene. Overall, tedizolid showed excellent activity against Gram-positive bacteria and was at least 4-fold more potent than linezolid against wild-type and linezolid-resistant isolates. Given the low overall frequency of isolates that would be resistant to tedizolid at the proposed break point of 0.5 µg/mL (0.19%) and potent activity against contemporary US and European isolates, tedizolid has the potential to serve as a valuable therapeutic option in the treatment of infections caused by Gram-positive pathogens.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Organofosfatos/farmacologia , Oxazóis/farmacologia , Acetamidas/farmacologia , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , Bactérias Gram-Positivas/isolamento & purificação , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Linezolida , Testes de Sensibilidade Microbiana , Mutação , Oxazolidinonas/farmacologia , RNA Ribossômico 23S/genética , Proteínas Ribossômicas/genética , Estados Unidos/epidemiologia
10.
Mol Cell ; 56(4): 531-40, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25306919

RESUMO

We demonstrate that the antibiotic amicoumacin A (AMI) is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G.


Assuntos
Antibacterianos/química , Cumarínicos/química , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Estabilidade de RNA , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Cumarínicos/farmacologia , Cristalografia por Raios X , Farmacorresistência Bacteriana , Escherichia coli , Testes de Sensibilidade Microbiana , Modelos Moleculares , Fator G para Elongação de Peptídeos/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/química , Staphylococcus aureus/genética , Thermus thermophilus
11.
Antimicrob Agents Chemother ; 58(11): 6592-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25155597

RESUMO

The Cfr methyltransferase confers resistance to six classes of drugs which target the peptidyl transferase center of the 50S ribosomal subunit, including some oxazolidinones, such as linezolid (LZD). The mobile cfr gene was identified in European veterinary isolates from the late 1990s, although the earliest report of a clinical cfr-positive strain was the 2005 Colombian methicillin-resistant Staphylococcus aureus (MRSA) isolate CM05. Here, through retrospective analysis of LZD(r) clinical strains from a U.S. surveillance program, we identified a cfr-positive MRSA isolate, 1128105, from January 2005, predating CM05 by 5 months. Molecular typing of 1128105 revealed a unique pulsed-field gel electrophoresis (PFGE) profile most similar to that of USA100, spa type t002, and multilocus sequence type 5 (ST5). In addition to cfr, LZD resistance in 1128105 is partially attributed to the presence of a single copy of the 23S rRNA gene mutation T2500A. Transformation of the ∼37-kb conjugative p1128105 cfr-bearing plasmid from 1128105 into S. aureus ATCC 29213 background strains was successful in recapitulating the Cfr antibiogram, as well as resistance to aminoglycosides and trimethoprim. A 7-kb cfr-containing region of p1128105 possessed sequence nearly identical to that found in the Chinese veterinary Proteus vulgaris isolate PV-01 and in U.S. clinical S. aureus isolate 1900, although the presence of IS431-like sequences is unique to p1128105. The cfr gene environment in this early clinical cfr-positive isolate has now been identified in Gram-positive and Gram-negative strains of clinical and veterinary origin and has been associated with multiple mobile elements, highlighting the versatility of this multidrug resistance gene and its potential for further dissemination.


Assuntos
Acetamidas/uso terapêutico , Antibacterianos/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/genética , Oxazolidinonas/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Adulto , Proteínas de Bactérias/genética , Sequência de Bases , Ceftazidima/uso terapêutico , Fibrose Cística , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Genes MDR/genética , Humanos , Linezolida , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Plasmídeos/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , RNA Ribossômico 23S/genética , Estudos Retrospectivos , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , Tobramicina/uso terapêutico
12.
Antimicrob Agents Chemother ; 58(11): 6949-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25136008

RESUMO

The cfr gene was identified in three linezolid-resistant USA300 methicillin-resistant Staphylococcus aureus (MRSA) isolates collected over a 3-day period at a New York City medical center in 2011 as part of a routine surveillance program. Each isolate possessed a plasmid containing a pSCFS3-like cfr gene environment. Transformation of the cfr-bearing plasmids into the S. aureus ATCC 29213 background recapitulated the expected Cfr antibiogram, including resistance to linezolid, tiamulin, clindamycin, and florfenicol and susceptibility to tedizolid.


Assuntos
Acetamidas/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Oxazolidinonas/farmacologia , Clindamicina/farmacologia , Diterpenos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Técnicas de Transferência de Genes , Humanos , Linezolida , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , New York , Organofosfatos/farmacologia , Oxazóis/farmacologia , Plasmídeos/genética , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Tianfenicol/análogos & derivados , Tianfenicol/farmacologia
13.
Nucleic Acids Res ; 41(14): e144, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761439

RESUMO

Aminoacyl-transfer RNA (tRNA) synthetases (RS) are essential components of the cellular translation machinery and can be exploited for antibiotic discovery. Because cells have many different RS, usually one for each amino acid, identification of the specific enzyme targeted by a new natural or synthetic inhibitor can be cumbersome. We describe the use of the primer extension technique in conjunction with specifically designed synthetic genes to identify the RS targeted by an inhibitor. Suppression of a synthetase activity reduces the amount of the cognate aminoacyl-tRNA in a cell-free translation system resulting in arrest of translation when the corresponding codon enters the decoding center of the ribosome. The utility of the technique is demonstrated by identifying a switch in target specificity of some synthetic inhibitors of threonyl-tRNA synthetase.


Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Sistema Livre de Células , Primers do DNA , Inibidores Enzimáticos/química , Genes Sintéticos , Reação em Cadeia da Polimerase/métodos , Biossíntese de Proteínas
14.
J Biomol Screen ; 18(9): 1018-26, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23686103

RESUMO

The macromolecular synthesis assay was optimized in both S. aureus and E. coli imp and used to define patterns of inhibition of DNA, RNA, protein, and cell wall biosynthesis of several drug classes. The concentration of drug required to elicit pathway inhibition differed among the antimicrobial agents tested, with inhibition detected at concentrations significantly below the minimum inhibitory concentration (MIC) for tedizolid; within 4-fold of the MIC for ciprofloxacin, cefepime, vancomycin, tetracycline, and chloramphenicol; and significantly above the MIC for rifampicin and kanamycin. In a DNA gyrase/topoisomerase IV structure-based drug design optimization program, the assay rapidly identified undesirable off-target activity within certain chemotypes, altering the course of the program to focus on the series that maintained on-target activity.


Assuntos
Antibacterianos/farmacologia , Bioensaio , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Parede Celular/efeitos dos fármacos , DNA Girase/química , DNA Bacteriano/antagonistas & inibidores , DNA Bacteriano/biossíntese , Descoberta de Drogas , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , RNA Bacteriano/antagonistas & inibidores , RNA Bacteriano/biossíntese , Staphylococcus aureus/metabolismo
15.
J Med Chem ; 56(4): 1748-60, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23362938

RESUMO

A series of potent and bacteria-selective threonyl-tRNA synthetase (ThrRS) inhibitors have been identified using structure-based drug design. These compounds occupied the substrate binding site of ThrRS and showed excellent binding affinities for all of the bacterial orthologues tested. Some of the compounds displayed greatly improved bacterial selectivity. Key residues responsible for potency and bacteria/human ThrRS selectivity have been identified. Antimicrobial activity has been achieved against wild-type Haemophilus influenzae and efflux-deficient mutants of Escherichia coli and Burkholderia thailandensis.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Treonina-tRNA Ligase/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Sítios de Ligação , Burkholderia/efeitos dos fármacos , Cristalografia por Raios X , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Haemophilus influenzae/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mutação , Ligação Proteica , Quinazolinas/síntese química , Quinazolinas/química , Quinazolinas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato , Treonina-tRNA Ligase/química , Yersinia pestis/efeitos dos fármacos
16.
Bioorg Med Chem Lett ; 23(5): 1529-36, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23352267

RESUMO

The bacterial topoisomerases DNA gyrase (GyrB) and topoisomerase IV (ParE) are essential enzymes that control the topological state of DNA during replication. The high degree of conservation in the ATP-binding pockets of these enzymes make them appealing targets for broad-spectrum inhibitor development. A pyrrolopyrimidine scaffold was identified from a pharmacophore-based fragment screen with optimization potential. Structural characterization of inhibitor complexes conducted using selected GyrB/ParE orthologs aided in the identification of important steric, dynamic and compositional differences in the ATP-binding pockets of the targets, enabling the design of highly potent pyrrolopyrimidine inhibitors with broad enzymatic spectrum and dual targeting activity.


Assuntos
DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , DNA Topoisomerase IV/química , Desenho de Fármacos , Modelos Moleculares , Pirimidinas/química , Pirróis/química , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 23(5): 1537-43, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23294697

RESUMO

The structurally related bacterial topoisomerases DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as prime candidates for the development of broad spectrum antibacterial agents. However, GyrB/ParE targeting antibacterials with spectrum that encompasses robust Gram-negative pathogens have not yet been reported. Using structure-based inhibitor design, we optimized a novel pyrrolopyrimidine inhibitor series with potent, dual targeting activity against GyrB and ParE. Compounds were discovered with broad antibacterial spectrum, including activity against Pseudomonas aeruginosa, Acinetobacter baumannii and Escherichia coli. Herein we describe the SAR of the pyrrolopyrimidine series as it relates to key structural and electronic features necessary for Gram-negative antibacterial activity.


Assuntos
Antibacterianos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/química , DNA Girase/química , DNA Topoisomerase IV/química , Desenho de Fármacos , Humanos , Pirimidinas/química , Pirróis/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química
18.
PLoS One ; 8(12): e84409, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386374

RESUMO

Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. However, growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highly conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Desenho de Fármacos , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Animais , Antibacterianos/síntese química , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , DNA Girase/química , DNA Topoisomerase IV/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Feminino , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , Inibidores da Topoisomerase II/síntese química
19.
Bioorg Med Chem Lett ; 21(18): 5171-6, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21831637

RESUMO

Dihydrofolate reductase (DHFR) inhibitors such as trimethoprim (TMP) have long played a significant role in the treatment of bacterial infections. Not surprisingly, after decades of use there is now bacterial resistance to TMP and therefore a need to develop novel antibacterial agents with expanded spectrum including these resistant strains. In this study, we investigated the optimization of 2,4-diamnoquinazolines for antibacterial potency and selectivity. Using structure-based drug design, several 7-aryl-2,4-diaminoquinazolines were discovered that have excellent sub-100 picomolar potency against bacterial DHFR. These compounds have good antibacterial activity especially on gram-positive pathogens including TMP-resistant strains.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Quinazolinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Estereoisomerismo , Relação Estrutura-Atividade
20.
Antimicrob Agents Chemother ; 55(8): 3714-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21646483

RESUMO

The recently described rRNA methyltransferase Cfr that methylates the conserved 23S rRNA residue A2503, located in a functionally critical region of the ribosome, confers resistance to an array of ribosomal antibiotics, including linezolid. A number of reports of linezolid-resistant cfr-positive clinical strains indicate the possible rapid spread of this resistance mechanism. Since the rate of dissemination and the efficiency of maintenance of a resistance gene depend on the fitness cost associated with its acquisition, we investigated the fitness cost of cfr expression in a laboratory Staphylococcus aureus strain. We found that acquisition of the cfr gene does not produce any appreciable reduction in the cell growth rate. Only in a cogrowth competition experiment was some loss of fitness observed because Cfr-expressing cells slowly lose to the cfr-negative control strain. Interestingly, cells expressing wild-type and catalytically inactive Cfr had very similar growth characteristics, indicating that the slight fitness cost associated with cfr acquisition stems from expression of the Cfr polypeptide rather than from the modification of the conserved rRNA residue. In some clinical isolates, cfr is coexpressed with the erm gene, which encodes a methyltransferase targeting another 23S rRNA residue, A2058. Dimethylation of A2058 by Erm notably increases the fitness cost associated with the Cfr-mediated methylation of A2503. The generally low fitness cost of cfr acquisition observed in our experiments with the laboratory S. aureus strain offers a microbiological explanation for the apparent spread of the cfr gene among pathogens.


Assuntos
Acetamidas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Oxazolidinonas/farmacologia , RNA Ribossômico/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Humanos , Linezolida , Metiltransferases/genética , Metiltransferases/metabolismo , Testes de Sensibilidade Microbiana , RNA Ribossômico/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...