Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 110-111: 28-36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35512517

RESUMO

INTRODUCTION: The in vivo generator 134Ce/134La has the potential to serve as a PET imaging surrogate for both alpha-emitting 225Ac and 227Th radionuclides due to the unique CeIII/CeIV redox couple and the relatively long half-life of 134Ce. The purpose of this study was to demonstrate the compatibility of 134Ce with DOTA-based antibody drug conjugates, which would act as therapeutic agents when incorporating 225Ac. METHODS: The in vivo biodistributions of [134Ce]Ce-DOTA and [134Ce]Ce-citrate were assayed by microPET imaging over 25 h in Swiss Webster mice to determine the in vivo stability of the [134Ce]Ce-DOTA complex. L3-edge X-ray absorption spectroscopy measurements were used to confirm the Ce oxidation state and the formation of a fully coordinated Ce-DOTA complex. The in vivo biodistribution of [134Ce]Ce-DOTA-Trastuzumab was assayed over 147 h by microPET imaging in SK-OV-3 tumor-bearing NOD SCID mice to evaluate tumor uptake and in vivo stability. Mice were euthanized at 214 h after administration of the radiolabeled antibody conjugate, and imaged 1 h later. An ex vivo biodistribution experiment was then performed in order to corroborate the PET images. RESULTS: [134Ce]Ce-DOTA displayed rapid renal elimination and high in vivo stability over 25 h, with negligible bone and liver uptake, in comparison to [134Ce]Ce-citrate. L3-edge X-ray absorption spectroscopy experiments confirmed the 3+ oxidation state within the stable Ce-DOTA complex. MicroPET images of [134Ce]Ce-DOTA-Trastuzumab displayed elevated tumor uptake over 214 h, with minimal bone and liver uptake analogous to previously reported [225Ac]Ac-DOTA-Trastuzumab biodistribution results, and the ex vivo biodistribution of [134Ce]Ce-DOTA-Trastuzumab corroborated the final PET images. CONCLUSION: These results demonstrate that 134Ce allows for long-term tumor targeting with DOTA-based antibody drug conjugates and may therefore be used to trace antibody drug conjugates incorporating 225Ac.


Assuntos
Imunoconjugados , Animais , Linhagem Celular Tumoral , Citratos , Camundongos , Camundongos SCID , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Trastuzumab
2.
Nature ; 590(7844): 85-88, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536647

RESUMO

The transplutonium elements (atomic numbers 95-103) are a group of metals that lie at the edge of the periodic table. As a result, the patterns and trends used to predict and control the physics and chemistry for transition metals, main-group elements and lanthanides are less applicable to transplutonium elements. Furthermore, understanding the properties of these heavy elements has been restricted by their scarcity and radioactivity. This is especially true for einsteinium (Es), the heaviest element on the periodic table that can currently be generated in quantities sufficient to enable classical macroscale studies1. Here we characterize a coordination complex of einsteinium, using less than 200 nanograms of 254Es (with half-life of 275.7(5) days), with an organic hydroxypyridinone-based chelating ligand. X-ray absorption spectroscopic and structural studies are used to determine the energy of the L3-edge and a bond distance of einsteinium. Photophysical measurements show antenna sensitization of EsIII luminescence; they also reveal a hypsochromic shift on metal complexation, which had not previously been observed in lower-atomic-number actinide elements. These findings are indicative of an intermediate spin-orbit coupling scheme in which j-j coupling (whereby single-electron orbital angular momentum and spin are first coupled to form a total angular momentum, j) prevails over Russell-Saunders coupling. Together with previous actinide complexation studies2, our results highlight the need to continue studying the unusual behaviour of the actinide elements, especially those that are scarce and short-lived.

3.
Nat Chem ; 13(3): 284-289, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33318671

RESUMO

Developing targeted α-therapies has the potential to transform how diseases are treated. In these interventions, targeting vectors are labelled with α-emitting radioisotopes that deliver destructive radiation discretely to diseased cells while simultaneously sparing the surrounding healthy tissue. Widespread implementation requires advances in non-invasive imaging technologies that rapidly assay therapeutics. Towards this end, positron emission tomography (PET) imaging has emerged as one of the most informative diagnostic techniques. Unfortunately, many promising α-emitting isotopes such as 225Ac and 227Th are incompatible with PET imaging. Here we overcame this obstacle by developing large-scale (Ci-scale) production and purification methods for 134Ce. Subsequent radiolabelling and in vivo PET imaging experiments in a small animal model demonstrated that 134Ce (and its 134La daughter) could be used as a PET imaging candidate for 225AcIII (with reduced 134CeIII) or 227ThIV (with oxidized 134CeIV). Evaluating these data alongside X-ray absorption spectroscopy results demonstrated how success relied on rigorously controlling the CeIII/CeIV redox couple.


Assuntos
Cério/química , Lantânio/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Abdome/diagnóstico por imagem , Animais , Radioisótopos de Cério/química , Oxirredução , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual
4.
Chemistry ; 26(11): 2354-2359, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31914232

RESUMO

Octadentate hydroxypyridinone (HOPO) and catecholamide (CAM) siderophore analogues are known to be efficacious chelators of the actinide cations, and these ligands are also capable of facilitating both activation and reduction of actinyl species. Utilizing X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies, as well as cyclic voltammetry measurements, herein, we elucidate chelation-based mechanisms for driving reactivity and initiating redox processes in a family of neptunyl-HOPO and CAM complexes. Based on the selected chelator, the ability to control the oxidation state of neptunium and the speed of reduction and concurrent oxo group activation was demonstrated. Most notably, reduction kinetics for the NpV O2 +/ /NpIV redox couple upon chelation by the ligands 3,4,3-LI(1,2-HOPO) and 3,4,3-LI(CAM)2 (1,2-HOPO)2 was observed to be faster than ever reported, and in fact quicker than we could measure using either X-ray absorption spectroscopy or electrochemical techniques.

5.
Commun Chem ; 3(1): 61, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36703424

RESUMO

The octadentate siderophore analog 3,4,3-LI(1,2-HOPO), denoted 343-HOPO hereafter, is known to have high affinity for both trivalent and tetravalent lanthanide and actinide cations. Here we extend its coordination chemistry to the rare-earth cations Sc3+ and Y3+ and characterize fundamental metal-chelator binding interactions in solution via UV-Vis spectrophotometry, nuclear magnetic resonance spectroscopy, and spectrofluorimetric metal-competition titrations, as well as in the solid-state via single crystal X-ray diffraction. Sc3+ and Y3+ binding with 343-HOPO is found to be robust, with both high thermodynamic stability and fast room temperature radiolabeling, indicating that 343-HOPO is likely a promising chelator for in vivo applications with both metals. As a proof of concept, we prepared a 86Y-343-HOPO complex for in vivo PET imaging, and the results presented herein highlight the potential of 343-HOPO chelated trivalent metal cations for therapeutic and theranostic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...