Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Biol Rep ; 51(1): 35, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157124

RESUMO

BACKGROUND: Plant microbiome acts as an interface between plants and their environment, aiding in the functioning of the ecosystem, such as protection against abiotic and biotic stress along with improving nutrient uptake. The rhizosphere is an essential interface for the interaction between plants and microbes and plays a substantial part in the removal as well as uptake of heavy metals and antibiotics from contaminated locations. Eichhornia crassipes is a promising plant that contains a rich community of microbes in its rhizosphere. Microorganism's association with plants embodies a crucial pathway via which humans can also be exposed to antibiotic-resistant genes and bacteria. METHODS AND RESULTS: In our earlier study enhanced removal of ciprofloxacin was observed by plant growth-promoting Microbacterium sp. WHC1 in the presence of E. crassipes root exudates. Therefore, the V3-V4, hypervariable region of the 16 S rRNA gene was studied to assess the bacterial diversity and functional profiles of the microbiota associated with plant roots. Using the QIIME software program, 16 S rRNA data from the Next Generation Sequencing (NGS) platform was examined. Alpha diversity including Chao1, Observed Shannon, and Simpson index denote significantly higher bacterial diversity. Proteobacteria (79%) was the most abundant phylum which was present in the root samples followed by Firmicutes (8%) and Cyanobacteria (8%). Sulfuricurvum (36%) is the most abundant genus belonging to the family Helicobacteraceae and the species kujiense in the genus Sulfuricurvum is the most abundant species present in the root sample. Also, the bacterial communities in the rhizoplane of Eichhornia crassipes harbor the genes conferring resistance to beta-lactams, tetracycline, fluoroquinolones, and penams. CONCLUSION: Metagenomic studies on the E. crassipes microbiome showed that the bacterial communities constituting the root exudates of the Eichhornia aid them to survive in a polluted environment.


Assuntos
Eichhornia , Humanos , Ecossistema , Antibacterianos/metabolismo , Ciprofloxacina , Fluoroquinolonas , Bactérias/genética
3.
Beilstein J Org Chem ; 19: 928-955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404802

RESUMO

Pyrrole is an important aromatic heterocyclic scaffold found in many natural products and predominantly used in pharmaceuticals. Continuous efforts are being made to design and synthesize various pyrrole derivatives using different synthetic procedures. Among them, the Clauson-Kaas reaction is a very old and well-known method for synthesizing a large number of N-substituted pyrroles. In recent years, due to global warming and environmental concern, research laboratories and pharmaceutical industries around the world are searching for more environmentally friendly reaction conditions for synthesizing compounds. As a result, this review describes the use of various eco-friendly greener protocols to synthesize N-substituted pyrroles. This synthesis involves the reaction of various aliphatic/aromatic primary amines, and sulfonyl primary amines with 2,5-dimethoxytetrahydrofuran in the presence of numerous acid catalysts and transition metal catalysts. The goal of this review is to summarize the synthesis of various N-substituted pyrrole derivatives using a modified Clauson-Kaas reaction under diverse conventional and greener reaction conditions.

4.
Curr Org Synth ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438898

RESUMO

BACKGROUND: Porphyrins are highly conjugated heterocyclic compounds and are found as the backbone of many natural products such as heme and chlorophyll. To improve its biological and optical properties, the functionalization of porphyrin at its ß- and meso-position has gained importance in recent years. OBJECTIVE: The purpose of this review is to describe the Pictet-Spengler method for the incorporation of nitrogenous and biologically important heterocyclic scaffolds such as pyrrolo-/indolo[1,2-a]quinoxaline, pyrrolo[1,2-a]pyrazine, and quinoline at the ß- and meso-positions of the porphyrins to increase π-conjugation and improve their biological, optical, and electrochemical properties. CONCLUSION: This review provides a comprehensive overview of the synthesis of N-heterocyclic extended porphyrins and metalloporphyrins via a modified Pictet-Spengler approach. The synthesized porphyrins were found to be highly conjugated and exhibited improved photophysical properties compared to their parent analogues. Moreover, the review article provided a brief overview of the Pictet-Spengler procedure, including product yields, reaction conditions, photophysical properties of the synthesized products, and potential applications in a variety of fields.

5.
Front Pharmacol ; 14: 1144561, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251338

RESUMO

Introduction: A wide range of pollutants, including the likes of xenobiotics, heavy metals, and antibiotics, are characteristic of marine ecosystems. The ability of the bacteria to flourish under high metal stress favors the selection of antibiotic resistance in aquatic environments. Increased use and misuse of antibiotics in medicine, agriculture, and veterinary have posed a grave concern over antimicrobial resistance. The exposure to these heavy metals and antibiotics in the bacteria drives the evolution of antibiotic and heavy metal resistance genes. In the earlier study by the author Alcaligenes sp. MMA was involved in the removal of heavy metals and antibiotics. Alcaligenes display diverse bioremediation capabilities but remain unexplored at the level of the genome. Methods: To shed light on its genome, the Alcaligenes sp. strain MMA, was sequenced using Illumina Nova Seq sequencer, which resulted in a draft genome of 3.9 Mb. The genome annotation was done using Rapid annotation using subsystem technology (RAST). Given the spread of antimicrobial resistance and the generation of multi-drug resistant pathogens (MDR), the strain MMA was checked for potential antibiotic and heavy metal resistance genes Further, we checked for the presence of biosynthetic gene clusters in the draft genome. Results: Alcaligenes sp. strain MMA, was sequenced using Illumina Nova Seq sequencer, which resulted in a draft genome of 3.9 Mb. The RAST analysis revealed the presence of 3685 protein-coding genes, involved in the removal of antibiotics and heavy metals. Multiple metal-resistant genes and genes conferring resistance to tetracycline, beta-lactams, and fluoroquinolones were present in the draft genome. Many types of BGCs were predicted, such as siderophore. The secondary metabolites of fungi and bacteria are a rich source of novel bioactive compounds which have the potential to in new drug candidates. Discussion: The results of this study provide information on the strain MMA genome and are valuable for the researcher in further exploitation of the strain MMA for bioremediation. Moreover, whole-genome sequencing has become a useful tool to monitor the spread of antibiotic resistance, a global threat to healthcare.

6.
Beilstein J Org Chem ; 19: 349-379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998309

RESUMO

Among all the available approaches in organic synthesis, the "click chemistry" protocol is very common nowadays to covalently connect two diverse moieties in a single framework. Therefore, this review focuses on the synthesis and photophysical studies of ß- and meso-substituted and 1,2,3-triazole-fused porphyrin conjugates. All of the porphyrin conjugates discussed here are synthesized via a copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction between an azide and a terminal alkyne, also popular as "click reaction" or CuAAC reaction. Moreover, the 1,2,3-triazole ring also serves as a spacer and an electron transfer bridge between the porphyrin and the attached chromophores. In order to provide a critical overview of the synthesis and properties of various porphyrin-triazole hybrids, this review will discuss some of the key reactions involved in the preparation of triazole-linked porphyrin conjugates.

7.
Environ Pollut ; 318: 120867, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528203

RESUMO

The contamination of Hexachlorohexane (Lindane) in soil and water has toxic effects due to its persistent nature. In our study, an indigenous HCH (gamma isomer) degrading bacterium viz Bacillus cereus SJPS-2 was isolated from Yamuna river water using enrichment culture method. The growth curve indicated that Bacillus cereus SJPS-2 was able to degrade ϒ-HCH effectively with 80.98% degradation. Further, process was improved by using immobilization using alginate beads which showed enhanced degradation (89.34%). Interestingly, in presence of fructose, the ϒ-HCH degradation was up to 79.24% with exponential growth curve whereas the degradation was only 5.61% in presence of glucose revealing diauxic growth curve. Furthermore, The FTIR results confirmed the potential lindane degradation capability of Bacillus cereus SJPS-2 and the bonds were recorded at wavelengths viz. 2900-2500 cm-1, 3300-2800 cm-1 and 785-540 cm-1. Similarity, the GC studies also reconfirmed the degradation potential with retention time (RT) of ethyl acetate and lindane was 2.12 and 11.0 respectively. Further, we studied the metabolic pathway involved for lindane utilization in Bacillus cereus using KEGG-KASS and functional gene annotation through Rapid Annotation using Subsystems Technology (RAST) resulted in the annotation of the lin genes (lin A, lin B, lin C, lin X, lin D, lin E) and respective encoding enzymes. The comparative ϒ-HCH degradation potential of B. cereus and P. putida KT2440 was also evaluated. The island viewer showed the different colors on circular genome indicate the coordinates of genomic islands resulted with some common genomic islands (GEIs) between both bacteria indicating the possibility of horizontal gene transfer at contaminated site or natural environment. These genomic islands (GEIs) contribute in the rearrangement genetic material or to evolve bacteria in stress conditions, as a result the metabolic pathways evolve by formation of catabolic genes. This study establishes the potential of Bacillus cereus SJPS-2 for effectual ϒ-HCH degradation.


Assuntos
Hexaclorocicloexano , Pseudomonas putida , Hexaclorocicloexano/metabolismo , Biodegradação Ambiental , Pseudomonas putida/genética , Bacillus cereus/genética , Anotação de Sequência Molecular
8.
Life Sci ; 305: 120792, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35817167

RESUMO

AIMS: Doxorubicin (DOX) is a widely used drug against multiple cancers. However, its clinical Use is often restricted due to multiple adverse effects. Recently, Selenium Nanoparticles (SeNPs) are gaining attention due to their low toxicity and higher biocompatibility, making them attractive nanoparticles (NPs) in medical and pharmaceutical sciences. Therefore, the current study aimed to assess if our biosynthesized SeNP from the endophytic fungus Fusarium oxysporum conjugated with DOX could alleviate the DOX-induced adverse effects. MAIN METHODS: For this purpose, we investigated various genotoxic, biochemical, histopathological, and immunohistochemical parameters and finally analyzed the metabolite profile by LC-MS/MS. KEY FINDINGS: We observed that DOX causes an increase in reactive oxygen and nitrogen species (ROS, RNS), 8-OHdG, and malondialdehyde (MDA), decreases antioxidant defense systems and reduces BCL-2 expression in cardiac tissue. In addition, a significant increase in DNA damage and alteration in the cytoarchitecture of the liver, kidney, and heart tissues was observed by Comet Tail Length and histopathological studies, respectively. Interestingly, the DOX-SeNP conjugate reduced ROS/RNS, 8-OHdG, and MDA levels in the liver, kidney, and heart tissues. It also restored the antioxidant enzymes and cytoarchitectures of the examined tissues, reduced genotoxicity, and increased the BCL-2 levels. Finally, metabolic profiling showed that DOX reduced the number of cardioprotective metabolites, which DOX-SeNP restored. SIGNIFICANCE: Collectively, the present results describe the protective effect of DOX-conjugated SeNP against DOX-induced toxicities. In conclusion, DOX-SeNP conjugate might be better for treating patients receiving DOX alone. However, it warrants further thorough investigation.


Assuntos
Nanopartículas , Selênio , Animais , Antibióticos Antineoplásicos/uso terapêutico , Antioxidantes/metabolismo , Cardiotoxicidade/etiologia , Cromatografia Líquida , Doxorrubicina/toxicidade , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2 , Espécies Reativas de Oxigênio , Selênio/farmacologia , Espectrometria de Massas em Tandem
9.
Front Microbiol ; 13: 872576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756008

RESUMO

We investigated the fungus Aspergillus fumigatus PD-18 responses when subjected to the multimetal combination (Total Cr, Cd2+, Cu2+, Ni2+, Pb2+, and Zn2+) in synthetic composite media. To understand how multimetal stress impacts fungal cells at the molecular level, the cellular response of A. fumigatus PD-18 to 30 mg/L multimetal stress (5 mg/L of each heavy metal) was determined by proteomics. The comparative fungal proteomics displayed the remarkable inherent intracellular and extracellular mechanism of metal resistance and tolerance potential of A. fumigatus PD-18. This study reported 2,238 proteins of which 434 proteins were exclusively expressed in multimetal extracts. The most predominant functional class expressed was for cellular processing and signaling. The type of proteins and the number of proteins that were upregulated due to various stress tolerance mechanisms were post-translational modification, protein turnover, and chaperones (42); translation, ribosomal structure, and biogenesis (60); and intracellular trafficking, secretion, and vesicular transport (18). In addition, free radical scavenging antioxidant proteins, such as superoxide dismutase, were upregulated upto 3.45-fold and transporter systems, such as protein transport (SEC31), upto 3.31-fold to combat the oxidative stress caused by the multiple metals. Also, protein-protein interaction network analysis revealed that cytochrome c oxidase and 60S ribosomal protein played key roles to detoxify the multimetal. To the best of our knowledge, this study of A. fumigatus PD-18 provides valuable insights toward the growing research in comprehending the metal microbe interactions in the presence of multimetal. This will facilitate in development of novel molecular markers for contaminant bioremediation.

10.
Curr Res Food Sci ; 5: 545-552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309262

RESUMO

Recently, Virgin coconut oil (VCO) has emerged as one of the most favorable edible oils because of its application in cooking, frying as well as additive used in food, pharmaceuticals, and cosmetic goods. These qualities have established VCO in high consumer demand and there is a great need of establishing a reliable method for the identification of its geographical origin. Through this present study, for the first time, it has been established that Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS) combined with multivariate chemometrics can be used for the identification of the geographical origin of the VCO samples of various provinces. Principal Component Analysis (PCA), and Linear Discriminant Analysis (LDA) were able to differentiate and classify the VCO samples of different geographical origins. Further, calibration models (Principal Component Regression and Partial Least Square Regression) were developed on the calibration dataset of the elemental concentration obtained from the ICP-MS analysis. An external dataset was used to develop the prediction model to predict the geographical origin of an unknown sample. Both PCR and PLS-R models were successfully able to predict the geographical origin with a high R2 value (0.999) and low RMSEP value 0.074 and 0.075% v/v of prediction respectively. In conclusion, ICP-MS combined with regression modelling can be used as an excellent tool for the identification of the geographical origin of the VCO samples of various provinces. This whole technique is the most suitable as it has high sensitivity as well as provides easy multi-metal analysis for a single sample of edible oil.

11.
Mol Biol Rep ; 49(6): 4479-4484, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35237932

RESUMO

BACKGROUND: Serratia is a pathogenic bacterium, commonly associated with neonatal intensive care units, and harbors antibiotic-resistant genes against multiple antibiotics e.g., resistance against penams, aminoglycosides, tetracyclines, cephalosporins, and macrolides. In the long-term contaminated habitat, the bacterial communities carry both antibiotic and metal resistance genes. This draft genome sequencing aimed to explore the alarming level of ARGs in the environment, additionally heavy metal-resistant genes were also explored in the draft genome. METHODS: Whole-genome sequencing was used to investigate ARGs in Serratia sp. R1. The bacteria were sequenced using Illumina Nova seq sequencer and subjected to genome annotation. The bacterial genome was explored for antibiotic- and metal-resistant genes. RESULTS: Sequencing resulted in 8.4 Mb genome and a total of 4411 functional genes were characterized in the draft genome. Genes resistant to Beta-lactams, cephalosporins, macrolides, fluoroquinolones, and tetracycline are present in the draft genome. Multiple metal-resistant genes are also present in the sequenced genome. CONCLUSION: The genes and proteins providing heavy metal and antibiotic resistance may be used in the bioremediation of environmental antibiotic residues to prevent the spread of antibiotic resistance. The current study can help us to adopt suitable mitigation measures against the multidrug-resistant Serratia.


Assuntos
Antibacterianos , Metais Pesados , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Humanos , Recém-Nascido , Macrolídeos/farmacologia , Serratia/genética
12.
Environ Res ; 199: 111316, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33989624

RESUMO

The use of pesticides to increase crop production has become one of the inevitable components of modern agriculture. Fipronil, a phenylpyrazoles insecticide, is one of the most widely used, systemic, broad-spectrum insecticides. Owing to its unique mode of action and selective toxicity, it was once regarded as safer alternatives to more toxic and persistent organochlorine insecticides. However, with the increased use, many studies have reported the toxicity of fipronil and its metabolites in various non-target organisms during the last two decades. Currently, it is regarded as one of the most persistent and lipophilic insecticides in the market. In the environment, fipronil can undergo oxidation, reduction, hydrolysis, or photolysis to form fipronil sulfone, fipronil sulfide, fipronil amide, or fipronil desulfinyl respectively. These metabolites except fipronil amide are more or less toxic and persistent than fipronil and have been reported from diverse environmental samples. Recently many studies have focused on the degradation and removal of fipronil residues from the environment. However, a comprehensive review summarizing and combining these recent findings is lacking. In the present review, we evaluate, summarize, and combine important findings from recent degradation studies of fipronil and its metabolites. An attempt has been made to elucidate the possible mechanism and pathways of degradation of fipronil and its toxic metabolites.


Assuntos
Inseticidas , Praguicidas , Agricultura , Inseticidas/toxicidade , Pirazóis
13.
J Environ Sci Health B ; 56(6): 577-586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999766

RESUMO

The present study demonstrated atrazine detoxification by intracellular crude enzyme extracts of Pseudomonas spp. strains ACB and TLB. Indigenous bacterial protein-based remediation techniques could be an alternative to bioaugmentation which pose multiple challenges when applied to the field. Intracellular enzymes were extracted from strains ACB and TLB and their degradation potential of 10 mg L-1 was determined using Gas Chromatography; further, enzyme extracts were subjected to protein profiling studies. In span of 6 h, enzyme extracts of strain ACB showed maximum degradation at 30 °C and 40 °C (71%) and enzyme extracts of strain TLB showed maximum degradation at 40 °C (48%). Atrazine degradation by enzyme extracts of strain ACB showed maximum degradation at pH 7 (71%) and pH 6 (69%) in 6 h. Similarly, enzyme extracts of strain TLB showed maximal degradation at pH 6 (46%) in 6 h. The present study demonstrated, for the first time, efficient atrazine remediation by intracellular crude enzyme extracts from epiphytic root bacteria at a range of temperature and pH conditions. Protein profiling studies indicated that atrazine induced expression of CoA ester lyase and alkyl hydroperoxide reductase in the strains ACB and TLB respectively. Expressions of these proteins have never been associated with atrazine exposure.


Assuntos
Atrazina/química , Proteínas de Bactérias/química , Herbicidas/química , Pseudomonas/enzimologia , Poluentes do Solo/química , Acorus/microbiologia , Biodegradação Ambiental , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio , Raízes de Plantas/microbiologia , Temperatura , Typhaceae/microbiologia
14.
Arch Microbiol ; 203(4): 1691-1696, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33459817

RESUMO

The pandemics have always been a destructive carrier to living organisms. Humans are the ultimate victims, as now we are facing the SARS CoV-2 virus caused COVID-19 since its emergence in Dec 2019, at Wuhan (China). Due to the new coronavirus' unexplored nature, we shed light on curcumin for its potential role against the disease. The Nsp9 replicase protein, which plays an essential role in virus replication, was extracted online, followed by 3D PDB model prediction with its validation. The in silico molecular docking of curcumin with the replicase enzyme gave insights into the preventive measures against the virus as curcumin showed multiple interactions with Nsp9 replicase. The current study showed the use of curcumin against the coronavirus and its possible role in developing medicine against it.


Assuntos
Curcumina/farmacologia , Simulação de Acoplamento Molecular , Proteínas de Ligação a RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , SARS-CoV-2/fisiologia
15.
Arch Microbiol ; 203(1): 13-30, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32785735

RESUMO

Biofilms are structured microbial communities of single or multiple populations in which microbial cells adhere to a surface and get embedded in extracellular polymeric substances (EPS). This review attempts to explain biofilm architecture, development phases, and forces that drive bacteria to promote biofilm mode of growth. Bacterial chemical communication, also known as Quorum sensing (QS), which involves the production, detection, and response to small molecules called autoinducers, is highlighted. The review also provides a brief outline of interspecies and intraspecies cell-cell communication. Additionally, we have performed docking studies using Discovery Studio 4.0, which has enabled our understanding of the prominent interactions between autoinducers and their receptors in different bacterial species while also scoring their interaction energies. Receptors, such as LuxN (Phosphoreceiver domain and RecA domain), LuxP, and LuxR, interacted with their ligands (AI-1, AI-2, and AHL) with a CDocker interaction energy of - 31.6083 kcal/mole; - 34.5821 kcal/mole, - 48.2226 kcal/mole and - 41.5885 kcal/mole, respectively. Since biofilms are ideal for the remediation of contaminants due to their high microbial biomass and their potential to immobilize pollutants, this article also provides an overview of biofilm-mediated bioremediation.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes , Ligantes , Percepção de Quorum/fisiologia , Simulação por Computador
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118822, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32829154

RESUMO

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy integrated with chemometrics was effectively applied for the rapid detection and accurate quantification of fried mustard oil (FMO) adulteration in pure mustard oil (PMO). PMO was adulterated with FMO in the range of 0.5-50% v/v. Principal component analysis (PCA) elucidated the studied adulteration using two components with an explained variance of 97%. The linear discriminant analysis (LDA) was adopted to classify the adulterated PMO samples with FMO. LDA model showed 100% accuracy initially, as well as when cross-validated. To enhance the overall quality of models, characteristic spectral regions were optimized, and principal component regression (PCR) and partial least square regression (PLS-R) models were constructed with high accuracy and precision. PLS-R model for the 2nd derivative of the optimized spectral region 1260-1080 cm-1 showed best results for prediction sample sets in terms of high R2 and residual predictive deviation (RPD) value of 0.999 and 31.91 with low root mean square error (RMSE) and relative prediction error (RE %) of 0.53% v/v and 3.37% respectively. Thus, the suggested method can detect up to 0.5% v/v of adulterated FMO in PMO in a short time interval.

17.
Arch Microbiol ; 203(1): 367-375, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32960315

RESUMO

A small percentage of the total freshwater on Earth is represented by river water. Microbes have an essential role to play in the biogeochemical cycles, mineralization of organic water, along with xenobiotics degradation. Microbial dynamics are susceptible to environmental stressors which includes pollutants such as antibiotics, metals, and other degradants. River Yamuna is polluted extensively by domestic and industrial wastes. Xenobiotics, when released into the environment, can lead to water pollution. The present study evaluates the microbial diversity in Yamuna River (28°40'5.53'' N, 77°15'0.35'' E) along with the prediction of the metagenome function. In this context, the metagenomic DNA was extracted and sequencing was done on Illumina@MiSeq platform. The total number of OTUs picked was 41,994, out of which 74% were classified within the kingdom Bacteria. 35% of the OTUs were assigned to phylum Proteobacteria, followed by Bacteriodetes (22%), whereas 26% of OTUs were unassigned. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to predict metagenomic functions using 16S rDNA as a marker. Metagenomic reads were assigned to the Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous (COG), and Gene Ontology (GO). Functional characterization reveals the presence of methyl-accepting chemotaxis protein which is an important adaptation for the microbes in the environment. The enzymes can be mapped for the bioremediation of xenobiotics. Information obtained from the amplicon sequencing of River Yamuna, collaborated with "omic" studies, may help in the design of bioremediation strategies and can be used for environmental clean-up of pollutants.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Rios/microbiologia , DNA Bacteriano/genética , Resíduos Industriais , Filogenia , RNA Ribossômico 16S/genética
18.
Environ Pollut ; 262: 114255, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443189

RESUMO

Fungi have an exceptional capability to flourish in presence of heavy metals and pesticide. However, the mechanism of bioremediation of pesticide (lindane) and multimetal [mixture of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn)] by a fungus is little understood. In the present study, Aspergillus fumigatus, a filamentous fungus was found to accumulate heavy metals in the order [Zn(98%)>Pb(95%)>Cd(63%)>Cr(62%)>Ni(46%)>Cu(37%)] from a cocktail of 30 mg L-1 multimetal and lindane (30 mg L-1) in a composite media amended with 1% glucose. Particularly, Pb and Zn uptake was enhanced in presence of lindane. Remarkably, lindane was degraded to 1.92 ± 0.01 mg L-1 in 72 h which is below the permissible limit value (2.0 mg L-1) for the discharge of lindane into the aquatic bodies as prescribed by European Community legislation. The utilization of lindane as a cometabolite from the complex environment was evident by the phenomenal growth of the fungal pellet biomass (5.89 ± 0.03 g L-1) at 72 h with cube root growth constant of fungus (0.0211 g1/3 L-1/3 h-1) compared to the biomasses obtained in case of the biotic control as well as in presence of multimetal complex without lindane. The different analytical techniques revealed the various stress coping strategies adopted by A. fumigatus for multimetal uptake in the simultaneous presence of multimetal and pesticide. From the Transmission electron microscope coupled energy dispersive X-ray analysis (TEM-EDAX) results, uptake of the metals Cd, Cu and Pb in the cytoplasmic membrane and the accumulation of the metals Cr, Ni and Zn in the cytoplasm of the fungus were deduced. Fourier-transform infrared spectroscopy (FTIR) revealed involvement of carboxyl/amide group of fungal cell wall in metal chelation. Thus A. fumigatus exhibited biosorption and bioaccumulation as the mechanisms involved in detoxification of multimetals.


Assuntos
Metais Pesados/análise , Praguicidas , Biodegradação Ambiental , Cádmio/análise , Zinco
19.
Arch Microbiol ; 202(6): 1489-1495, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32219483

RESUMO

Antibiotic contamination in environmental matrices is a serious global problem which leads to an increase in the proliferation of antibiotic resistance genes. Amoxicillin is ubiquitous in the environment, but there is hardly any information on the dissipation of amoxicillin by the microbial community. In view of this, the present study focusses on the removal of amoxicillin using amoxicillin-resistant bacteria, Alcaligenes sp. MMA. Bacteria were characterized using antibiotic tests, biochemical and molecular analysis. Alcaligenes sp. MMA was able to remove up to 84% of amoxicillin in 14 days in M9 minimal media, and the degradation products were confirmed using LC-MS/MS, including the benzothiazole, 2-Amino-3-methoxyl benzoic acid, 4-Hydroxy-2-methyl benzoic acid, 5-Amino-2-methylphenol and 3,5-Bis(tert-butyl)-2-hydroxybenzaldehyde, at the end of 14th day which further shows the removal of amoxicillin by the bacterial strain. Differential expression of porins was found in the presence of amoxicillin as a sole source of carbon and energy for the bacterial strain. Molecular interaction using in silico studies were performed which showed the formation of a hydrogen bond between amoxicillin and porins.


Assuntos
Alcaligenes/metabolismo , Amoxicilina/metabolismo , Antibacterianos/metabolismo , Biodegradação Ambiental , Alcaligenes/genética , Cromatografia Líquida , Farmacorresistência Bacteriana/fisiologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Porinas/biossíntese , Espectrometria de Massas em Tandem
20.
Arch Microbiol ; 202(2): 225-232, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31598755

RESUMO

Amoxicillin-resistant bacteria were isolated using selective enrichment procedure. The morphological, biochemical and molecular characterization based on 16S rRNA gene sequencing and phylogenetic analysis of the bacterial strain WA5 confirmed that the strain belongs to the genus Stenotrophomonas. The bacteria were named as Stenotrophomonas sp. strain WA5 (MK110499). Substantial growth was seen in M9 minimal media supplemented with 5 mg L-1 of amoxicillin as a sole source of carbon and energy. RNA yield was also observed to be decreased in the presence of amoxicillin. Amoxicillin (5 mg L-1)-induced alteration is seen on bacterial protein profile and unique polypeptide bands were seen to be induced in the presence of amoxicillin, the bands were subjected to trypsin digestion, and LC-MS/MS analysis showed that the bands belong to the family of DNA-dependent RNA polymerase subunit ß (rpoC). Plasmid DNA isolation indicated the presence of antibiotic-resistant genes being harboured by the plasmid.


Assuntos
Amoxicilina/metabolismo , Antibacterianos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Stenotrophomonas/efeitos dos fármacos , Stenotrophomonas/metabolismo , Poluentes Químicos da Água/metabolismo , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biodegradação Ambiental , Cromatografia Líquida , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Resistência às Penicilinas/genética , Filogenia , Plasmídeos/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Stenotrophomonas/genética , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...