Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Int J Food Microbiol ; 412: 110550, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38199016

RESUMO

Vinegar has been used for centuries as a food preservative, flavor enhancer, and medicinal agent. While commonly known for its sour taste and acidic properties due to acetic acid bacteria metabolism, vinegar is also home to a diverse community of lactic acid bacteria (LAB). The main genera found during natural fermentation include Lactobacillus, Lacticaseibacillus, Lentilactobacillus, Limosilactbacillus, Leuconostoc, and Pedicoccus. Many of the reported LAB species fulfill the probiotic criteria set by the World Health Organization (WHO). However, it is crucial to acknowledge that LAB viability undergoes a significant reduction during vinegar fermentation. While containing LAB, none of the analyzed vinegar met the minimum viable amount required for probiotic labeling. To fully unlock the potential of vinegar as a probiotic, investigations should be focused on enhancing LAB viability during vinegar fermentation, identifying strains with probiotic properties, and establishing appropriate dosage and consumption guidelines to ensure functional benefits. Currently, vinegar exhibits substantial potential as a postbiotic product, attributed to the high incidence and growth of LAB in the initial stages of the fermentation process. This review aims to identify critical gaps and address the essential requirements for establishing vinegar as a viable probiotic product. It comprehensively examines various relevant aspects, including vinegar processing, total and LAB diversity, LAB metabolism, the potential health benefits linked to vinegar consumption, and the identification of potential probiotic species.


Assuntos
Lactobacillales , Lactobacillales/metabolismo , Fermentação , Ácido Acético/metabolismo , Bactérias , Lactobacillaceae/metabolismo
2.
Bioresour Technol ; 393: 130078, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993072

RESUMO

The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.


Assuntos
Petróleo , Poli-Hidroxialcanoatos , Plásticos , Biomassa
3.
Biotechnol Adv ; 70: 108300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38101553

RESUMO

In recent decades, environmental concerns have directed several policies, investments, and production processes. The search for sustainable and eco-friendly strategies is constantly increasing to reduce petrochemical product utilization, fossil fuel pollution, waste generation, and other major ecological impacts. The concepts of circular economy, bioeconomy, and biorefinery are increasingly being applied to solve or reduce those problems, directing us towards a greener future. Within the biotechnology field, the Bacillus genus of bacteria presents extremely versatile microorganisms capable of producing a great variety of products with little to no dependency on petrochemicals. They are able to grow in different agro-industrial wastes and extreme conditions, resulting in healthy and environmentally friendly products, such as foods, feeds, probiotics, plant growth promoters, biocides, enzymes, and bioactive compounds. The objective of this review was to compile the variety of products that can be produced with Bacillus cells, using the concepts of biorefinery and circular economy as the scope to search for greener alternatives to each production method and providing market and bioeconomy ideas of global production. Although the genus is extensively used in industry, little information is available on its large-scale production, and there is little current data regarding bioeconomy and circular economy parameters for the bacteria. Therefore, as this work gathers several products' economic, production, and environmentally friendly use information, it can be addressed as one of the first steps towards those sustainable strategies. Additionally, an extensive patent search was conducted, focusing on products that contain or are produced by the Bacillus genus, providing an indication of global technology development and direction of the bacteria products. The Bacillus global market represented at least $18 billion in 2020, taking into account only the products addressed in this article, and at least 650 patent documents submitted per year since 2017, indicating this market's extreme importance. The data we provide in this article can be used as a base for further studies in bioeconomy and circular economy and show the genus is a promising candidate for a greener and more sustainable future.


Assuntos
Bacillus , Resíduos Industriais , Alimentos , Biotecnologia , Biocombustíveis
4.
Foods ; 12(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509773

RESUMO

In recent years, concerns about a good-quality diet have increased. Food supplements such as prebiotics have great nutritional and health benefits. Within the diverse range of prebiotics, xylooligosaccharides (XOs) show high potential, presenting exceptional properties for the prevention of systemic disorders. XOs can be found in different natural sources; however, their production is limited. Lignocellulosic biomasses present a high potential as a source of raw material for the production of XOs, making the agro-industrial by-products the perfect candidates for production on an industrial scale. However, these biomasses require the application of physicochemical pretreatments to obtain XOs. Different pretreatment methodologies are discussed in terms of increasing the production of XOs and limiting the coproduction of toxic compounds. The advance in new technologies for XOs production could decrease their real cost (USD 25-50/kg) on an industrial scale and would increase the volume of market transactions in the prebiotic sector (USD 4.5 billion). In this sense, new patents and innovations are being strategically developed to expand the use of XOs as daily prebiotics.

5.
J Food Sci Technol ; 60(9): 2401-2407, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37424583

RESUMO

This study aimed to evaluate the feasibility of using sugar-sweetened beverages (SSB) for citric acid (CA) production and its impact on chemical oxygen demand (COD) of SSB. Five types of SSB were used as a carbon source for CA production by A. niger, and the COD of each SSB was measured before and after the bioprocess. Results showed that all tested SSB were suitable for CA production, with maximum yields ranging from 13.01 to 56.62 g L- 1. The COD was reduced from 53 to 75.64%, indicating that the bioprocess effectively treated SSB wastes. The use of SSB as a substrate for CA production provides an alternative to traditional feedstocks, such as sugarcane and beet molasses. The low-cost and high availability of SSB makes it an attractive option for CA production. Moreover, the study demonstrated the potential of the bioprocess to simultaneously treat and reuse SSB wastes, reducing the environmental impact of the beverage industry. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05761-9.

6.
World J Microbiol Biotechnol ; 39(7): 192, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166608

RESUMO

Biological contamination is one of the main bottlenecks in microalgae production, reducing quality and productivity and sometimes leading to the complete loss of the cultures. Selecting terpenes can be a pathway toward eco-friendly contamination control in microalgae cultures. This work evaluated the presence of bacterial contaminants in N. oleoabundans cultures through HTS and 16 S analysis and their susceptibility to six natural terpenes (α-pinene, ß-pinene, limonene, trans-cinnamaldehyde, linalool, and eugenol). The principal phyla identified were Proteobacteria, Bacteroidetes, and Actinobacteria, and based on these data, 89 bacterial isolates of seven genera were obtained (36 Aureimonas sp., 27 Microbacterium sp., 5 Pseudomonas sp., 9 Bacillus sp., 14 Shinella sp., 1 Brevundimonas sp., and 1 Exiguobacterium sp.) at 25ºC in the presence of light. It was possible to observe that Beta-pinene 50 mg L- 1 only inhibited Bacillus sp. In contrast, Alpha-pinene, Linalool, and Trans-cinnamaldehyde, at a concentration of 6.25 mg L- 1 efficiently inhibited most isolates. The inhibition percentages found were 79-99%.


Assuntos
Bactérias , Terpenos , Terpenos/farmacologia , Terpenos/metabolismo , Bactérias/metabolismo
7.
iScience ; 26(6): 106785, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250780

RESUMO

Due to their widespread occurrence and the inadequate removal efficiencies by conventional wastewater treatment plants, emerging contaminants (ECs) have recently become an issue of great concern. Current ongoing studies have focused on different physical, chemical, and biological methods as strategies to avoid exposing ecosystems to significant long-term risks. Among the different proposed technologies, the enzyme-based processes rise as green biocatalysts with higher efficiency yields and lower generation of toxic by-products. Oxidoreductases and hydrolases are among the most prominent enzymes applied for bioremediation processes. The present work overviews the state of the art of recent advances in enzymatic processes during wastewater treatment of EC, focusing on recent innovations in terms of applied immobilization techniques, genetic engineering tools, and the advent of nanozymes. Future trends in the enzymes immobilization techniques for EC removal were highlighted. Research gaps and recommendations on methods and utility of enzymatic treatment incorporation in conventional wastewater treatment plants were also discussed.

8.
Bioresour Technol ; 372: 128650, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682478

RESUMO

Soybean hulls are lignocellulosic residuesgeneratedinthe industrial processing of soybean, representing about 5 % of the mass of the whole bean. This by-product isan importantsource of polymers suchas cellulose(34 %) and hemicellulose (11 %),which could bevalorizedvia biotechnology to improvethe economic returnof the oilseed chain. In the present work,soybean hulls were evaluated as a carbon sourcefor biolipid productionbyLipomycesstarkeyi LPB 53. Initially the hulls were treated physicochemically and enzymatically to obtain fermentable sugars. Subsequently, biomass growth was evaluated using different nitrogen sources andthe lipid production was optimized, reaching a maximum cell biomass concentration of 26.5 g/L with 42.5 % of lipids. Around 65 % of the xylose content was consumed.The obtained oil wasmajorlycomposed of oleic, palmitic, palmitoleic, linoleic and stearic fatty acids in a proportion of 54 %, 32 %, 4 %, 3 % and 2 %, respectively.


Assuntos
Lipídeos , Lipomyces , Glycine max , Fermentação
9.
Bioresour Technol ; 372: 128666, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693509

RESUMO

Lignocellulosic biomass is a renewable material of great abundance. However, its recalcitrant characteristic requires the application of pretreatments. Sugarcane bagasse (SB), soybean hulls (SH), cocoa pod husks (CPH) and oil palm empty fruit bunches (OPEFB) were subjected to imidazole pretreatment in order to evaluate chemical composition variations and influence over enzymatic hydrolysis efficiency. Non-treated SH, SB and OPEFB have higher content of holocellulose, while CPH is rich in lignin polymers (31.2%). After imidazole-pretreatment, all biomasses presented structural disorganization of lignocellulosic fibres and enrichment in the percentage of cellulose. Levels of up to 72% delignification were obtained, which allowed an enzymatic conversion greater than 95% for SB, SH and OPEFB, while only 83% was reached for CPH. Imidazole is then emerging as a potential catalyst for the pretreatment of agro-industrial by-products, allowing the valorisation of these residues and their reinsertion into the production chain under a biorefinery concept.


Assuntos
Celulose , Saccharum , Celulose/química , Solventes , Biomassa , Lignina/química , Imidazóis , Hidrólise
10.
Bioresour Technol ; 370: 128537, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581233

RESUMO

The high costs of bioplastics' production may hinder their commercialization. Development of new processes with high yields and in biorefineries can enhance diffusion of these materials. This work evaluated the production of polyhydroxybutyrate (PHB) from the combination of milled corn starchy fraction hydrolysate and crude glycerol as substrates by the strain Cupriavidus necator LPB 1421. After optimization steps, maximum accumulation of 62 % of PHB was obtained, which represents 11.64 g.L-1 and productivity of 0.162 g.Lh-1. In a stirred tank bioreactor system with 8 L of operational volume, 70 % of PHB accumulation was reported, representing 14.17 g.L-1 of the biopolymer with 0.197 g.Lh-1 productivity. PHB recovery was conducted using a chemical digestion method, reaching >99 % purity. Therefore, the potential application of milled corn as substrate for PHB production was confirmed. The developed bioplastic process could be coupled to a bioethanol producing unit creating the opportunity of a sustainable and economic biorefinery.


Assuntos
Cupriavidus necator , Hidroxibutiratos , Zea mays , Poliésteres , Biopolímeros
11.
Sci Total Environ ; 857(Pt 3): 159627, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36280070

RESUMO

It is imperative to search for appropriate processes to convert wastes into energy, chemicals, and materials to establish a circular bio-economy toward sustainable development. Concerning waste biomass valorization, hydrothermal carbonization (HTC) is a promising route given its advantages over other thermochemical processes. From that perspective, this article reviewed the HTC of potential biomass wastes, the characterization and environmental utilization of hydrochar, and the biorefinery potential of this process. Crop and forestry residues and sewage sludge are two categories of biomass wastes (lignocellulosic and non-lignocellulosic, respectively) readily available for HTC or even co-hydrothermal carbonization (Co-HTC). The temperature, reaction time, and solid-to-liquid ratio utilized in HTC/Co-HTC of those biomass wastes were reported to range from 140 to 370 °C, 0.05 to 48 h, and 1/47 to 1/1, respectively, providing hydrochar yields of up to 94 % according to the process conditions. Hydrochar characterization by different techniques to determine its physicochemical properties is crucial to defining the best applications for this material. In the environmental field, hydrochar might be suitable for removing pollutants from aqueous systems, ameliorating soils, adsorbing atmospheric pollutants, working as an energy carrier, and performing carbon sequestration. But this material could also be employed in other areas (e.g., catalysis). Regarding the effluent from HTC/Co-HTC, this byproduct has the potential for serving as feedstock in other processes, such as anaerobic digestion and microalgae cultivation. These opportunities have aroused the industry interest in HTC since 2010, and the number of industrial-scale HTC plants and patent document applications has increased. The hydrochar patents are concentrated in China (77.6 %), the United States (10.6 %), the Republic of Korea (3.5 %), and Germany (3.5 %). Therefore, considering the possibilities of converting their product (hydrochar) and byproduct (effluent) into energy, chemicals, and materials, HTC or Co-HTC could work as the first step of a biorefinery. And this approach would completely agree with circular bioeconomy principles.


Assuntos
Poluentes Ambientais , Microalgas , Biomassa , Carbono/química , Esgotos , Temperatura
12.
Front Microbiol ; 13: 994524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406426

RESUMO

Cocoa beans fermentation is a spontaneous process, essential for the generation of quality starting material for fine chocolate production. The understanding of this process has been studied by the application of high-throughput sequencing technologies, which grants a better assessment of the different microbial taxa and their genes involved in this microbial succession. The present study used shotgun metagenomics to determine the enzyme-coding genes of the microbiota found in two different groups of cocoa beans varieties during the fermentation process. The statistical evaluation of the most abundant genes in each group and time studied allowed us to identify the potential metabolic pathways involved in the success of the different microorganisms. The results showed that, albeit the distinction between the initial (0 h) microbiota of each varietal group was clear, throughout fermentation (24-144 h) this difference disappeared, indicating the existence of selection pressures. Changes in the microbiota enzyme-coding genes over time pointed to the distinct ordering of fermentation at 24-48 h (T1), 72-96 h (T2), and 120-144 h (T3). At T1, the significantly more abundant enzyme-coding genes were related to threonine metabolism and those genes related to the glycolytic pathway, explained by the abundance of sugars in the medium. At T2, the genes linked to the metabolism of ceramides and hopanoids lipids were clearly dominant, which are associated with the resistance of microbial species to extreme temperatures and pH values. In T3, genes linked to trehalose metabolism, related to the response to heat stress, dominated. The results obtained in this study provided insights into the potential functionality of microbial community succession correlated to gene function, which could improve cocoa processing practices to ensure the production of more stable quality end products.

13.
J Fungi (Basel) ; 8(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36294630

RESUMO

The aim of the present study was to evaluate the use of supercritical CO2 combined with cosolvent for the recovery of bioactive compounds of soybean fermented with Rhizopus oligosporus NRRL 2710. Soxhlet extractions using seven different organic solvents (n-hexane, petroleum ether, ethyl acetate, acetone, ethanol, methanol, and water) were initially performed for comparative purposes. The extracts obtained were characterized by physicochemical, antioxidant, total phenolic, and oxidative proprieties. For the Soxhlet extractions, the highest and lowest yields obtained were 45.24% and 15.56%, using methanol and hexane, respectively. The extraction using supercritical CO2 combined with ethanol as a static modifier (scCO2 + EtOH) presented, at a high pressure (25 MPa) and temperature (80 °C), a phenolic compound content of 1391.9 µg GAE g-1 and scavenging of 0.17 g, reaching a 42.87% yield. The extracts obtained by sCO2 + EtOH were characterized by high contents of essential fatty acids (linoleic acid and oleic acid) and bioactive compounds (gallic acid, trans-cinnamic acid, daidzein, and genistein). These extracts also showed a great potential for inhibiting hyaluronidase enzymes (i.e., anti-inflammatory activity). Thermogravimetric analyses of the samples showed similar profiles, with oil degradation values in the range from 145 to 540 °C, indicating progressive oil decomposition with a mass loss ranging from 93 to 98.7%. In summary, this study demonstrated the flexibility of scCO2 + EtOH as a green technology that can be used to obtain high-value-added products from fermented soybean.

14.
Microorganisms ; 10(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144457

RESUMO

The use of yeasts as starter cultures was boosted with the emergence of large-scale fermentations in the 20th century. Since then, Saccharomyces cerevisiae has been the most common and widely used microorganism in the food industry. However, Candida species have also been used as an adjuvant in cheese production or as starters for coffee, cocoa, vegetable, meat, beer, and wine fermentations. A thorough screening of candidate Candida is sometimes performed to obtain the best performing strains to enhance specific features. Some commonly selected species include C. pulcherrima (teleomorph Metschnikowia pulcherrima) (wine), C. parapsilosis (teleomorph Monilia parapsilosis) (coffee), C. famata (teleomorph Debaryomyces hansenii) (cheese), and C. zeylanoides (teleomorph Kurtzmaniella zeylanoides) and C. norvegensis (teleomorph Pichia norvegensis) (cocoa). These species are associated with the production of key metabolites (food aroma formation) and different enzymes. However, safety-associated selection criteria are often neglected. It is widely known that some Candida species are opportunistic human pathogens, with important clinical relevance. Here, the physiology and metabolism of Candida species are addressed, initially emphasizing their clinical aspects and potential pathogenicity. Then, Candida species used in food fermentations and their functional roles are reported. We recommended that Candida not be used as food cultures if safety assessments are not performed. Some safety features are highlighted to help researchers choose methods and selection criteria.

15.
Microorganisms ; 10(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36014024

RESUMO

In the growing search for therapeutic strategies, there is an interest in foods containing natural antioxidants and other bioactive compounds capable of preventing or reversing pathogenic processes associated with metabolic disease. Fermentation has been used as a potent way of improving the properties of soybean and their components. Microbial metabolism is responsible for producing the ß-glucosidase enzyme that converts glycosidic isoflavones into aglycones with higher biological activity in fermented soy products, in addition to several end-metabolites associated with human health development, including peptides, phenolic acids, fatty acids, vitamins, flavonoids, minerals, and organic acids. Thus, several products have emerged from soybean fermentation by fungi, bacteria, or a combination of both. This review covers the key biological characteristics of soy and fermented soy products, including natto, miso, tofu, douchi, sufu, cheonggukjang, doenjang, kanjang, meju, tempeh, thua-nao, kinema, hawaijar, and tungrymbai. The inclusion of these foods in the diet has been associated with the reduction of chronic diseases, with potential anticancer, anti-obesity, antidiabetic, anticholesterol, anti-inflammatory, and neuroprotective effects. These biological activities and the recently studied potential of fermented soybean molecules against SARS-CoV-2 are discussed. Finally, a patent landscape is presented to provide the state-of-the-art of the transfer of knowledge from the scientific sphere to the industrial application.

16.
Bioresour Technol ; 362: 127800, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007765

RESUMO

The application of biorefinery concepts to produce different value-added biomolecules such as xylooligosaccharides (XOs) generates economical competitive, sustainable and environmentally friendly processes. The objective of this work was to develop an efficient imidazole-pretreatment process of sugarcane bagasse (SB) and the use of the obtained hemicellulose fraction in the production of XOs with the application of in house produced xylanolytic enzymes using SB as substrate, under a biorefinery approach. SB imidazole pretreatment allowed the recovery of a hemicellulose rich fraction (34%) with 91.2% of delignification. Xylanase production by Aspergillus niger reached 53.1 U·mL-1 at 120 h. The application of produced xylanases in the enzymatic hydrolysis of extracted xylan, allowed the production of 6.06 g·L-1 of XOs, where xylotriose represented >70%. Great perspectives are viewed for the implementation of mixed processes in a sustainable closed cycle to produce biomolecules with concomitant valorization of subproducts from SB chain.


Assuntos
Saccharum , Celulose/química , Endo-1,4-beta-Xilanases/química , Glucuronatos/química , Hidrólise , Imidazóis , Oligossacarídeos , Saccharum/química
17.
J Immunol Methods ; 503: 113242, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182576

RESUMO

Immunoassays are practical and cost-effective approaches suitable for large-scale tuberculosis (TB) screening. This study identified new peptide mimotopes of Mycobacterium tuberculosis and applied them in the serodiagnosis of TB. Thereby, linear (X15, X8CX8) and constrained (LX-4 and LX-8) phage display peptide libraries were screened with purified Immunoglobulin G antibodies from TB-positive patients, and eight mimotopes were selected. The mimotope peptides were screened using the SPOT-synthesis technique followed by immunoblotting. Peptides P.Mt.PD.4 and P.Mt.PD.7 demonstrated the highest binding affinity and were chemically synthesized and used as antigens for enzyme-linked immunosorbent assay (ELISA) assays. Experimental designs were used to optimize the assays and to assess each variable's influence. Peptide P.Mt.PD.7 was differentiated between positive and negative samples and achieved 100% sensitivity and specificity when tested on a 100-sera panel. Therefore, the selected peptide was applied to the ELISA assay as a screening method for diagnosing TB represents a potential tool for helping to combat the disease.


Assuntos
Bacteriófagos , Mycobacterium tuberculosis , Tuberculose , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Biblioteca de Peptídeos , Peptídeos , Projetos de Pesquisa , Tuberculose/diagnóstico
18.
Environ Technol ; 43(10): 1503-1512, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33084534

RESUMO

Cellulose is a potential resource to be recovered from wastewater treatment plants (WWTP). Enzyme formulations can be employed to hydrolyze cellulose into fermentable sugars, to be further used as biochemical building blocks or reducing its recalcitrance to further treatment processes. This study proposed the production, recovery and formulation of cellulase using domestic wastewater as culture medium and its application for the hydrolysis of cellulosic residues recovered from WWTPs. Cellulose was recovered from raw sanitary wastewater using a fine-mesh sieve (0.35 mm) and quantified through enzymatic hydrolysis and thermogravimetric analysis. The production, concentration and formulation of cellulase enzyme resulted in an enzymatic blend of endoglucanases (7.3 UFP/mL), cellobiohydrolases (7.4 UCMC/mL) and beta-glucosidases (4.4 UBGL/mL). The content of the recovered cellulosic material was 21.3% according to enzymatic hydrolysis and 27.7 for thermogravimetric results. The enzymatic hydrolysis of the WWTP residue using the produced cellulase (107.6 ± 10.2 mgreduc/gresidue) showed better results than using the commercial cellulase complex (66.4 ± 2.5 mgreduc/gresidue). This fact showed the potential of application of the produced enzyme for the hydrolysis of cellulosic residues recovered from WWTP processes. In a non-waste biorefinery approach, the generated hydrolysate can be further used for producing added-value biomolecules including biofuels and biochemicals.


Assuntos
Celulase , Celulose , Biocombustíveis , Celulase/química , Celulose/química , Hidrólise , Águas Residuárias
19.
Foods ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613253

RESUMO

In this study, an investigation of the microbial community structure and chemical changes in different layers of a static coffee beans fermentation tank (named self-induced anaerobic fermentation-SIAF) was conducted at different times (24, 48, and 72 h). The microbial taxonomic composition comprised a high prevalence of Enterobacteriaceae and Nectriaceae and low prevalence of lactic acid bacteria and yeast, which greatly differs from the traditional process performed in open tanks. No major variation in bacterial and fungal diversity was observed between the bottom, middle, and top layers of the fermentation tank. On the other hand, the metabolism of these microorganisms varied significantly, showing a higher consumption of pulp sugar and production of metabolites in the bottom and middle layers compared to the top part of the fermentation tank. Extended processes (48 and 72 h) allowed a higher production of key-metabolites during fermentation (e.g., 3-octanol, ethyl acetate, and amyl acetate), accumulation in roasted coffee beans (acetic acid, pyrazine, methyl, 2-propanone, 1-hydroxy), and diversification of sensory profiles of coffee beverages compared to 24 h of fermentation process. In summary, this study demonstrated that SIAF harbored radically different dominant microbial groups compared to traditional coffee processing, and diversification of fermentation time could be an important tool to provide coffee beverages with novel and desirable flavor profiles.

20.
Bioresour Technol ; 346: 126455, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34863851

RESUMO

Traditionally, lipid-producing microorganisms have been obtained via conventional bioprospecting based on isolation and screening techniques, demanding time and effort. Thus, high-throughput sequencing combined with conventional microbiological approaches has emerged as an advanced and rapid strategy for recovering novel oleaginous microorganisms from target environments. This review highlights recent developments in lipid-producing microorganism bioprospecting, following (i) from traditional cultivation techniques to state-of-the-art metagenomics approaches; (ii) related topics on workflow, next-generation sequencing platforms, and knowledge bioinformatics; and (iii) biotechnological potential of the production of docosahexaenoic acid (DHA) by Aurantiochytrium limacinum, arachidonic acid (ARA) by Mortierella alpina and biodiesel by Rhodosporidium toruloides. These three species have been shown to be highly promising and studied in research articles, patents and commercialized products. Trends, innovations and future perspectives of these microorganisms are also addressed. Thus, these microbial lipids allow the development of food, feed and biofuels as alternative solutions to animal and vegetable oils.


Assuntos
Bioprospecção , Metagenômica , Animais , Ácido Araquidônico , Biocombustíveis , Metagenoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...