Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 3): 127797, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949272

RESUMO

Biodegradable orthopedic implants are essential for restoring the physiological structure and function of bone tissue while ensuring complete degradation after recovery. Polylactic acid (PLA), a biodegradable polymer, is considered a promising material due to its considerable mechanical properties and biocompatibility. However, further improvements are necessary to enhance the mechanical strength and bioactivity of PLA for reliable load-bearing orthopedic applications. In this study, a multifunctional PLA-based composite was fabricated by incorporating tricalcium phosphate (TCP) microspheres and magnesium (Mg) particles homogenously at a volume fraction of 40 %. This approach aims to enhance mechanical strength, accelerate pore generation, and improve biological and antibacterial performance. Mg content was incorporated into the composite at varying values of 1, 3, and 5 vol% (referred to as PLA/TCP-1 Mg, PLA/TCP-3 Mg, and PLA/TCP-5 Mg, respectively). The compressive strength and stiffness were significantly enhanced in all composites, reaching 87.7, 85.9, and 84.1 MPa, and 2.7, 3.0, and 3.1 GPa, respectively. The degradation test indicated faster elimination of the reinforcers as the Mg content increased, resulting in accelerated pore generation to induce enhanced osseointegration. Because PLA/TCP-3 Mg and PLA/TCP-5 Mg exhibited cracks in the PLA matrix due to rapid corrosion of Mg forming corrosion byproducts, to optimize the Mg particle content, PLA/TCP-1 Mg was selected for further evaluation. As determined by in vitro biological and antibacterial testing, PLA/TCP-1 Mg showed enhanced bioactivity with pre-osteoblast cells and exhibited antibacterial properties by suppressing bacterial colonization. Overall, the multifunctional PLA/TCP-Mg composite showed improved mechanobiological performance, making it a promising material for biodegradable orthopedic implants.


Assuntos
Magnésio , Osseointegração , Magnésio/farmacologia , Magnésio/química , Poliésteres/farmacologia , Poliésteres/química , Antibacterianos/farmacologia , Teste de Materiais , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
2.
Acta Biomater ; 172: 175-187, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37865280

RESUMO

Fast-dissolving microneedles (DMNs) hold significant promise for transdermal drug delivery, offering improved patient compliance, biocompatibility, and functional adaptability for various therapeutic purposes. However, the mechanical strength of the biodegradable polymers used in DMNs often proves insufficient for effective penetration into human skin, especially under high humidity conditions. While many composite strategies have been developed to reinforce polymer-based DMNs, simple mixing of the reinforcements with polymers often results in ineffective penetration due to inhomogeneous dispersion of the reinforcements and the formation of undesired micropores. In response to this challenge, this study aimed to enhance the mechanical performance of hyaluronic acid (HA)-based microneedles (MNs), one of the most commonly used DMN systems. We introduced in situ precipitation of silica nanoparticles (Si) into the HA matrix in conjunction with conventional micromolding. The precipitated silica nanoparticles were uniformly distributed, forming an interconnected network within the HA matrix. Experimental results demonstrated that the mechanical properties of the HA-Si composite MNs with up to 20 vol% Si significantly improved, leading to higher penetration efficiency compared to pure HA MNs, while maintaining structural integrity without any critical defects. The composite MNs also showed reduced degradation rates and preserved their drug delivery capabilities and biocompatibility. Thus, the developed HA-Si composite MNs present a promising solution for efficient transdermal drug delivery and address the mechanical limitations inherent in DMN systems. STATEMENT OF SIGNIFICANCE: HA-Si composite dissolving microneedle (DMN) systems were successfully fabricated through in situ precipitation and conventional micromolding processes. The precipitated silica nanoparticles formed an interconnected network within the HA matrix, ranging in size from 25 to 230 nm. The optimal silica content for HA-Si composite MN systems should be up to 20 % by volume to maintain structural integrity and mechanical properties. HA-Si composite MNs with up to 20 % Si showed improved penetration efficiency and reduced degradation rates compared to pure HA MNs, thereby expanding the operational window. The HA-Si composite MNs retained good drug delivery capabilities and biocompatibility.


Assuntos
Ácido Hialurônico , Pele , Humanos , Ácido Hialurônico/química , Administração Cutânea , Pele/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Agulhas
3.
Front Microbiol ; 13: 845795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495698

RESUMO

Re-emerging viral threats have continued to challenge the medical and public health systems. It has become clear that a significant number of severe viral infection cases are due to an overreaction of the immune system, which leads to hyperinflammation. In this study, we aimed to demonstrate the therapeutic efficacy of the dexamethasone nanomedicine in controlling the symptoms of influenza virus infection. We found that the A/Wisconsin/WSLH34939/2009 (H1N1) infection induced severe pneumonia in mice with a death rate of 80%, accompanied by significant epithelial cell damage, infiltration of immune cells, and accumulation of pro-inflammatory cytokines in the airway space. Moreover, the intranasal delivery of liposomal dexamethasone during disease progression reduced the death rate by 20%. It also significantly reduced the protein level of tumor necrosis factor-alpha (TNFα), interleukin-1ß (IL-1ß), IL-6, and the C-X-C motif chemokine ligand 2 (CXCL2) as well as the number of infiltrated immune cells in the bronchoalveolar lavage fluids as compared to the control and free dexamethasone. The liposomal dexamethasone was mainly distributed into the monocyte/macrophages as a major cell population for inducing the cytokine storm in the lungs. Taken together, the intranasal delivery of liposomal dexamethasone may serve as a novel promising therapeutic strategy for the treatment of influenza A-induced pneumonia.

4.
J Wildl Dis ; 57(3): 612-617, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872350

RESUMO

Samples from 29 adult Gentoo (Pygoscelis papua), Chinstrap (Pygoscelis antarcticus), and Adélie Penguins (Pygoscelis adeliae) at the King Sejong Station on NarÌ¢ ebski Point, King George Island, Antarctica, were investigated to detect antibodies to avian influenza, Newcastle disease virus, infectious bursal disease virus, infectious bronchitis virus, Mycoplasma, and Salmonella. Antibodies were identified from one Gentoo Penguin and one Chinstrap Penguin against infectious bronchitis virus; from one Gentoo Penguin against Newcastle disease virus; from one Gentoo Penguin against Mycoplasma synoviae; and from two Chinstrap Penguins against Salmonella pullorum. Thirty-three dead penguin chicks were collected from the breeding colony for necropsy, histopathological examination, and polymerase chain reaction. Pulmonary hemorrhage and congestion were the main necropsy findings.


Assuntos
Spheniscidae , Animais , Regiões Antárticas
5.
Membranes (Basel) ; 11(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921517

RESUMO

To improve the CO2/N2 separation performance, mixed-matrix carbon molecular sieve membranes (mixed-matrix CMSMs) were fabricated and tested. Two carbon-based fillers, graphene oxide (GO) and activated carbon (YP-50F), were separately incorporated into two polymer precursors (Matrimid® 5218 and ODPA-TMPDA), and the resulting CMSMs demonstrated improved CO2 permeability. The improvement afforded by YP-50F was more substantial due to its higher accessible surface area. Based on the gas permeation data and the Robeson plot for CO2/N2 separation, the performances of the CMSMs containing 15 wt % YP-50F and 15 wt % GO in the mixed polymer matrix surpassed the 2008 Robeson upper bound of polymeric membranes. Hence, this study demonstrates the feasibility of such membranes in improving the CO2/N2 separation performance through the appropriate choice of carbon-based filler materials in polymer matrices.

6.
J Environ Pathol Toxicol Oncol ; 40(2): 65-79, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33822518

RESUMO

Environmental pollution (EP) is a well-known threat to wild animals, but its toxicological impact is poorly understood. In vitro toxicity evaluation using cells of lower predators could be a promising way to assess and monitor the effects of EPs on whole wildlife populations that are related in the food web. Here, we describe EPs' toxic effect and mechanism in the primary fibroblast derived from the embryo of the striped field mouse, Apodemus agrarius. Characterization of the primary fibroblast was via morphology, genetics, immunocytochemistry, and stable culture conditions for optimal toxicity screening. Cell viability assays-MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and lactate dehydrogenase (LDH)-were performed to observe cytotoxicity, and quantitative PCR was conducted to confirm gene alteration by EP exposure. MTT and LDH assays confirmed the cytotoxicity of transfluthrin (TF), benzyl butyl phthalate (BBP), and 17ß-estradiol (E2) with IC50 values of 10.56 µM, 10.82 µM, and 24.08 µM, respectively, following 48-h exposures. mRNA expression of androgen-binding protein, growth hormone receptor, cytochrome C oxidase, and cytochrome P450-1A1 was induced after exposure to TF, BBP, and E2. We unveiled new EP mechanisms at the mammalian cellular level and discovered potential biomarker genes for monitoring of EPs. Based on our findings, we propose the primary fibroblast of A. agrarius as a valuable model to assess the toxicological effects of EP on wildlife.


Assuntos
Ciclopropanos/toxicidade , Disruptores Endócrinos/toxicidade , Estradiol/toxicidade , Estrogênios/toxicidade , Fibroblastos/efeitos dos fármacos , Fluorbenzenos/toxicidade , Inseticidas/toxicidade , Ácidos Ftálicos/toxicidade , Proteína de Ligação a Androgênios/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 1/genética , Citocromo P-450 CYP1A1/genética , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Murinae , Receptores da Somatotropina/genética
7.
Biomaterials ; 266: 120473, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120202

RESUMO

With the development in tissue engineering, cell transplantation, and genetic technologies, living cells have become an important therapeutic tool in clinical medical care. For various cell-based technologies including cell therapy and cell-based sensors in addition to fundamental studies on single-cell biology, the cytoprotection of individual living cells is a prerequisite to extend cell storage life or deliver cells from one place to another, resisting various external stresses. Nature has evolved a biological defense mechanism to preserve their species under unfavorable conditions by forming a hard and protective armor. Particularly, plant seeds covered with seed coat turn into a dormant state against stressful environments, due to mechanical and water/gas constraints imposed by hard seed coat. However, when the environmental conditions become hospitable to seeds, seed coat is ruptured, initiating seed germination. This seed dormancy and germination mechanism has inspired various approaches that artificially induce cell sporulation via chemically encapsulating individual living cells within a thin but tough shell forming a 3D "cell-in-shell" structure. Herein, the recent advance of cell encapsulation strategies along with the potential advantages of the 3D "cell-in-shell" system is reviewed. Diverse coating materials including polymeric shells and hybrid shells on different types of cells ranging from microbes to mammalian cells will be discussed in terms of enhanced cytoprotective ability, control of division, chemical functionalization, and on-demand shell degradation. Finally, current and potential applications of "cell-in-shell" systems for cell-based technologies with remaining challenges will be explored.


Assuntos
Engenharia Biomédica , Citoproteção , Animais , Sementes , Engenharia Tecidual
8.
Biomed Eng Lett ; 10(4): 453-479, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33194241

RESUMO

In the last decade, an emerging three-dimensional (3D) printing technique named freeform 3D printing has revolutionized the biomedical engineering field by allowing soft matters with or without cells to be printed and solidified with high precision regardless of their poor self-supportability. The key to this freeform 3D printing technology is the supporting matrices that hold the printed soft ink materials during omnidirectional writing and solidification. This approach not only overcomes structural design restrictions of conventional layer-by-layer printing but also helps to realize 3D printing of low-viscosity or slow-curing materials. This article focuses on the recent developments in freeform 3D printing of soft matters such as hydrogels, cells, and silicone elastomers, for biomedical engineering. Herein, we classify the reported freeform 3D printing systems into positive, negative, and functional based on the fabrication process, and discuss the rheological requirements of the supporting matrix in accordance with the rheological behavior of counterpart inks, aiming to guide development and evaluation of new freeform printing systems. We also provide a brief overview of various material systems used as supporting matrices for freeform 3D printing systems and explore the potential applications of freeform 3D printing systems in different areas of biomedical engineering.

9.
Biomed Eng Lett ; 10(4): 517-532, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33194245

RESUMO

Additive manufacturing (AM) of biomaterials has evolved from a rapid prototyping tool into a viable approach for the manufacturing of patient-specific implants over the past decade. It can tailor to the unique physiological and anatomical criteria of the patient's organs or bones through precise controlling of the structure during the 3D printing. Silicone elastomers, which is a major group of materials in many biomedical implants, have low viscosities and can be printed with a special AM platform, known as freeform 3D printing systems. The freeform 3D printing systems are composed of a supporting bath and a printing material. Current supporting matrices that are either commercially purchased or synthesized were usually disposed of after retrieval of the printed part. In this work, we proposed a new and improved supporting matrix comprises of synthesized calcium alginate microgels produced via encapsulation which can be recycled, reused, and recovered for multiple prints, hence minimizing wastage and cost of materials. The dehydration tolerance of the calcium alginate microgels was improved through physical means by the addition of glycerol and chemical means by developing new calcium alginate microgels encapsulated with glycerol. The recyclability of the heated calcium alginate microgels was also enhanced by a rehydration step with sodium chloride solution and a recovery step with calcium chloride solution via the ion exchange process. We envisaged that our reusable and recyclable biocompatible calcium alginate microgels can save material costs, time, and can be applied in various freeform 3D printing systems.

10.
Polymers (Basel) ; 12(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962059

RESUMO

Osteoarthritis of the knee with meniscal pathologies is a severe meniscal pathology suffered by the aging population worldwide. However, conventional meniscal substitutes are not 3D-printable and lack the customizability of 3D printed implants and are not mechanically robust enough for human implantation. Similarly, 3D printed hydrogel scaffolds suffer from drawbacks of being mechanically weak and as a result patients are unable to execute immediate post-surgical weight-bearing ambulation and rehabilitation. To solve this problem, we have developed a 3D silicone meniscus implant which is (1) cytocompatible, (2) resistant to cyclic loading and mechanically similar to native meniscus, and (3) directly 3D printable. The main focus of this study is to determine whether the purity, composition, structure, dimensions and mechanical properties of silicone implants are affected by the use of a custom-made in-house 3D-printer. We have used the phosphate buffer saline (PBS) absorption test, Fourier transform infrared (FTIR) spectroscopy, surface profilometry, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) to effectively assess and compare material properties between molded and 3D printed silicone samples.

11.
Int J Bioprint ; 6(2): 258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32782988

RESUMO

Composite hydrogels have gained great attention as three-dimensional (3D) printing biomaterials because of their enhanced intrinsic mechanical strength and bioactivity compared to pure hydrogels. In most conventional printing methods for composite hydrogels, particles are preloaded in ink before printing, which often reduces the printability of composite ink with little mechanical improvement due to poor particle-hydrogel interaction of physical mixing. In contrast, the in situ incorporation of nanoparticles into a hydrogel during 3D printing achieves uniform distribution of particles with remarkable mechanical reinforcement, while precursors dissolved in inks do not influence the printing process. Herein, we introduced a "printing in liquid" technique coupled with a hybridization process, which allows 3D freeform printing of nanoparticle-reinforced composite hydrogels. A viscoplastic matrix for this printing system provides not only support for printed hydrogel filaments but also chemical reactants to induce various reactions in printed objects for in situ modification. Nanocomposite hydrogel scaffolds were successfully fabricated through this 3D freeform printing of hyaluronic acid (HAc)-alginate (Alg) hydrogel inks through a two-step crosslinking strategy. The first ionic crosslinking of Alg provided structural stability during printing, while the secondary crosslinking of photo-curable HAc improved the mechanical and physiological stability of the nanocomposite hydrogels. For in situ precipitation during 3D printing, phosphate ions were dissolved in the hydrogel ink and calcium ions were added to the viscoplastic matrix. The composite hydrogels demonstrated a significant improvement in mechanical strength, biostability, as well as biological performance compared to pure HAc. Moreover, the multi-material printing of composites with different calcium phosphate contents was achieved by adjusting the ionic concentration of inks. Our method greatly accelerates the 3D printing of various functional or hybridized materials with complex geometries through the design and modification of printing materials coupled with in situ post-printing functionalization and hybridization in reactive viscoplastic matrices.

12.
Membranes (Basel) ; 10(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709044

RESUMO

Nanocrystalline UiO-66 and its derivatives (containing -NH2, -Br, -(OH)2) were developed via pre-synthetic functionalization and incorporated into a polyimide membrane to develop a mixed-matrix membrane (MMM) for CO2/N2 separation. Incorporation of the non-functionalized UiO-66 nanocrystals into the polyimide membrane successfully improved CO2 permeability, with a slight decrease in CO2/N2 selectivity, owing to its large accessible surface area. The addition of other functional groups further improved the CO2/N2 selectivity of the polymeric membrane, with UiO-66-NH2, UiO-66-Br, and UiO-66-(OH)2 demonstrating improvements of 12%, 4%, and 17%, respectively. Further evaluation by solubility-diffusivity analysis revealed that the functionalized UiO-66 in MMMs can effectively increase CO2 diffusivity while suppressing N2 sorption, thus, resulting in improved CO2/N2 selectivity. Such results imply that the structural tuning of UiO-66 by the incorporation of various functional groups is an effective strategy to improve the CO2 separation performance of MMMs.

13.
Polymers (Basel) ; 12(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370046

RESUMO

The first successful direct 3D printing, or additive manufacturing (AM), of heat-cured silicone meniscal implants, using biocompatible and bio-implantable silicone resins is reported. Silicone implants have conventionally been manufactured by indirect silicone casting and molding methods which are expensive and time-consuming. A novel custom-made heat-curing extrusion-based silicone 3D printer which is capable of directly 3D printing medical silicone implants is introduced. The rheological study of silicone resins and the optimization of critical process parameters are described in detail. The surface and cross-sectional morphologies of the printed silicone meniscus implant were also included. A time-lapsed simulation study of the heated silicone resin within the nozzle using computational fluid dynamics (CFD) was done and the results obtained closely resembled real time 3D printing. Solidworks one-convection model simulation, when compared to the on-off model, more closely correlated with the actual probed temperature. Finally, comparative mechanical study between 3D printed and heat-molded meniscus is conducted. The novel 3D printing process opens up the opportunities for rapid 3D printing of various customizable medical silicone implants and devices for patients and fills the current gap in the additive manufacturing industry.

14.
Cell Rep ; 31(6): 107643, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402274

RESUMO

As current therapies benefit only a minority of cancer patients, additional therapeutic targets are needed. Tumor-associated macrophages (TAMs) have attracted attention for improving therapeutic responses, yet regulatory strategies remain elusive. Here, we show that the protein kinase A catalytic subunit (PKA-C) acts as a molecular switch, inducing a pro-tumoral immunosuppressive macrophage phenotype within tumors. In human and murine breast cancer, overactivated PKA in TAMs creates a detrimental microenvironment for cancer progression by inducing vascular endothelial growth factor A (VEGFA), interleukin-10 (IL-10), and macrophage-derived arginase 1 (ARG1) expression. Macrophages with genetic deletion of PKA-C are prone to be pro-inflammatory, suggesting a possible immunotherapeutic target. Delivery of liposomal PKA inhibitor facilitates tumor regression and abrogates pro-tumoral TAM functions in mice. The therapeutic effect of targeting PKA is pronounced when combined with αCTLA-4 antibody, increasing cluster of differentiation 8 (CD8)+GranzymeB+ T cells by about 60-fold. Our findings demonstrate critical roles of TAM PKA-C in tumor progression and suggest that targeting PKA-C efficiently augments cancer treatment responses.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Imunoterapia/métodos , Macrófagos/metabolismo , Microambiente Tumoral/genética , Animais , Domínio Catalítico , Feminino , Humanos , Camundongos
15.
Int J Mol Sci ; 21(9)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344885

RESUMO

Overwhelming and persistent inflammation of retinal pigment epithelium (RPE) induces destructive changes in the retinal environment. However, the precise mechanisms remain unclear. In this study, we aimed to investigate RPE-specific biological and metabolic responses against intense inflammation and identify the molecular characteristics determining pathological progression. We performed quantitative analyses of the proteome and phosphoproteome of the human-derived RPE cell line ARPE-19 after treatment with lipopolysaccharide (LPS) for 45 min or 24 h using the latest isobaric tandem-mass tags (TMTs) labeling approach. This approach led to the identification of 8984 proteins, of which 261 showed a 1.5-fold change in abundance after 24 h of treatment with LPS. A parallel phosphoproteome analysis identified 20,632 unique phosphopeptides from 3207 phosphoproteins with 3103 phosphorylation sites. Integrated proteomic and phosphoproteomic analyses showed significant downregulation of proteins related to mitochondrial respiration and cell cycle checkpoint, while proteins related to lipid metabolism, amino acid metabolism, cell-matrix adhesion, and endoplasmic reticulum (ER) stress were upregulated after LPS stimulation. Further, phosphorylation events in multiple pathways, including MAPKK and Wnt/ß-catenin signalings, were identified as involved in LPS-triggered pathobiology. In essence, our findings reveal multiple integrated signals exerted by RPE under inflammation and are expected to give insight into the development of therapeutic interventions for RPE disorders.


Assuntos
Proteínas do Olho/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Epitélio Pigmentado da Retina/metabolismo , Análise por Conglomerados , Ontologia Genética , Humanos , Inflamação , Lipopolissacarídeos/farmacologia , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
16.
Proc Natl Acad Sci U S A ; 117(16): 8711-8718, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253309

RESUMO

Here we describe the development of a humidity-responsive sheet of paper that is derived solely from natural pollen. Adaptive soft material components of the paper exhibit diverse and well-integrated responses to humidity that promote shape reconfiguration, actuation, and locomotion. This mechanically versatile and nonallergenic paper can generate a cyclically high contractile stress upon water absorption and desorption, and the rapid exchange of water drives locomotion due to hydrodynamic effects. Such dynamic behavior can be finely tuned by adjusting the structure and properties of the paper, including thickness, surface roughness, and processing conditions, analogous to those of classical soapmaking. We demonstrate that humidity-responsive paper-like actuators can mimic the blooming of the Michelia flower and perform self-propelled motion. Harnessing the material properties of bioinspired systems such as pollen paper opens the door to a wide range of sustainable, eco-friendly, and biocompatible material innovation platforms for applications in sensing, actuation, and locomotion.

17.
Nat Commun ; 11(1): 1449, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193375

RESUMO

Pollen's practically-indestructible shell structure has long inspired the biomimetic design of organic materials. However, there is limited understanding of how the mechanical, chemical, and adhesion properties of pollen are biologically controlled and whether strategies can be devised to manipulate pollen beyond natural performance limits. Here, we report a facile approach to transform pollen grains into soft microgel by remodeling pollen shells. Marked alterations to the pollen substructures led to environmental stimuli responsiveness, which reveal how the interplay of substructure-specific material properties dictates microgel swelling behavior. Our investigation of pollen grains from across the plant kingdom further showed that microgel formation occurs with tested pollen species from eudicot plants. Collectively, our experimental and computational results offer fundamental insights into how tuning pollen structure can cause dramatic alterations to material properties, and inspire future investigation into understanding how the material science of pollen might influence plant reproductive success.


Assuntos
Ciência dos Materiais , Microgéis/química , Pólen/química , Biomimética/métodos , Química Computacional , Epitopos/química , Epitopos/imunologia , Esterificação , Dureza , Hidrólise , Hidróxidos/química , Microscopia de Fluorescência , Pectinas/química , Pectinas/imunologia , Pólen/imunologia , Polinização/fisiologia , Compostos de Potássio/química , Espectroscopia de Infravermelho com Transformada de Fourier
18.
J Mol Cell Biol ; 12(7): 543-555, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31900478

RESUMO

Interleukin-10 (IL-10) is the most potent anti-inflammatory cytokine in the body and plays an essential role in determining outcomes of many inflammatory diseases. Cellular metabolism is a critical determinant of immune cell function; however, it is currently unclear whether metabolic processes are specifically involved in IL-10 production. In this study, we aimed to find the central metabolic molecule regulating IL-10 production of macrophages, which are the main producers of IL-10. Transcriptomic analysis identified that metabolic changes were predominantly enriched in Kupffer cells at the early inflammatory phase of a mouse endotoxemia model. Among them, pyruvate dehydrogenase kinase (PDK)-dependent acute glycolysis was negatively involved in IL-10 production. Inhibition or knockdown of PDK selectively increased macrophage IL-10 expression. Mechanistically, PDK inhibition increased IL-10 production via profound phosphorylation of adenosine monophosphate (AMP)-activated protein kinase alpha 1 (AMPKα1) by restricting glucose uptake in lipopolysaccharide-stimulated macrophages. AMPKα1 consequently activated p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and cyclic AMP-responsive element-binding protein to regulate IL-10 production. Our study uncovers a previously unknown regulatory mechanism of IL-10 in activated macrophages involving an immunometabolic function of PDK.


Assuntos
Interleucina-10/biossíntese , Macrófagos/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Adenilato Quinase/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ácido Dicloroacético/farmacologia , Endotoxemia/patologia , Ativação Enzimática/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Camundongos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Biomater Sci ; 8(1): 450-461, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31748767

RESUMO

Biofabrication with various hydrogel systems allows the production of tissue or organ constructs in vitro to address various challenges in healthcare and medicine. In particular, photocrosslinkable hydrogels have great advantages such as excellent spatial and temporal selectivity and low processing cost and energy requirements. However, inefficient polymerization kinetics of commercialized photoinitiators upon exposure to UV-A radiation or visible light increase processing time, often compromising cell viability. In this study, we developed a hydrogel crosslinking system which exhibited efficient crosslinking properties and desired mechanical properties with high cell viability, through a dual-photoinitiator approach. Through the co-existence of Irgacure 2959 and VA-086, the overall crosslinking process was completed with a minimal UV dosage during a significantly reduced crosslinking time, producing mechanically robust hydrogel constructs, while most encapsulated cells within the hydrogel constructs remained viable. Moreover, we fabricated a large PEGDA hydrogel construct with a single microchannel as a proof of concept for hydrogels with vasculature to demonstrate the versatility of the system. Our dual-photoinitiator approach allowed the production of this photocrosslinkable hydrogel system with microchannels, significantly improving cell viability and processing efficiency, yet maintaining good mechanical stability. Taken together, we envision the concurrent use of photoinitiators, Irgacure 2959 and VA-086, opening potential avenues for the utilization of various photocrosslinkable hydrogel systems in perfusable large artificial tissue for in vivo and ex vivo applications with improved processing efficiency and cell viability.


Assuntos
Acetamidas/farmacologia , Compostos Azo/farmacologia , Fibroblastos/citologia , Propano/análogos & derivados , Acetamidas/química , Animais , Compostos Azo/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas , Fibroblastos/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Luz , Camundongos , Impressão Tridimensional , Propano/química , Propano/farmacologia , Engenharia Tecidual , Alicerces Teciduais
20.
Biomaterials ; 223: 119461, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31518843

RESUMO

Bare metal stents are commonly used in interventional cardiology; they provide successful treatment because of their excellent mechanical properties, expandability ratios, and flexibility. However, their insufficient vascular affinity can induce the development of neointimal hyperplasia following arterial injury and subsequent smooth muscle cell overgrowth in the lumen of a stented vessel. Nanoengineering of the bare metal stent surface is a valuable strategy for eliciting favorable vascular responses. In this study, we introduce a target-ion-induced plasma sputtering (TIPS) technique to fabricate a platform with a favorable endothelial environment. This technique enables the simple single-step production of a Ta-implanted nanoridged surface on a stent with a complex 3D geometry that shows a clear tendency to become oriented parallel to the direction of blood flow. Moreover, the nanoridges developed show good structural integrity and mechanical stability, resulting in apparently stable morphologies under high strain rates. In vitro cellular responses to the Co-Cr, such as endothelialization, platelet activation, and blood coagulation, are considerably altered after TIPS treatment; endothelium formation is rapid and surface thrombogenicity is low. An in vivo rabbit iliac artery model is used to confirm that the nanoridged surface facilitates rapid re-endothelialization and limits the formation of neointima compared to the bare stent. These results indicate that the Ta ion implanted nanoridge platform fabricated using the TIPS technique has immense potential as a solution for in-stent restenosis and ensuring the long-term patency of bare metal stents.


Assuntos
Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Nanopartículas/química , Stents , Tantálio/química , Animais , Coagulação Sanguínea , Adesão Celular , Movimento Celular , Proliferação de Células , Materiais Revestidos Biocompatíveis , Endotélio Vascular/patologia , Análise de Fourier , Humanos , Hiperplasia , Íons , Masculino , Metais/química , Miócitos de Músculo Liso , Nanotecnologia , Neointima/patologia , Ativação Plaquetária , Coelhos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA