Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Clin Microbiol Infect Dis ; 39(6): 1169-1175, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32062723

RESUMO

Clostridioides difficile infections are a significant threat to our healthcare system, and rapid and accurate diagnostics are crucial to implement the necessary infection prevention and control measurements. Nucleic acid amplification tests are such reliable diagnostic tools for the detection of toxigenic Clostridioides difficile strains directly from stool specimens. In this multicenter evaluation, we determined the performance of the revogene C. difficile assay. The analysis was conducted on prospective stool specimens collected from six different sites in Europe. The performance of the revogene C. difficile assay was compared to the different routine diagnostic methods and, for a subset of the specimens, against toxigenic culture. In total, 2621 valid stool specimens were tested, and the revogene C. difficile assay displayed a sensitivity/specificity of 97.1% [93.3-99.0] and 98.9% [98.5-99.3] for identification of Clostridioides difficile infection. Discrepancy analysis using additional methods improved this performance to 98.8% [95.8-99.9] and 99.6% [99.2-99.8], respectively. In comparison to toxigenic culture, the revogene C. difficile assay displayed a sensitivity/specificity of 93.0% [86.1-97.1] and 99.5% [98.7-99.9], respectively. These results indicate that the revogene C. difficile assay is a robust and reliable aid in the diagnosis of Clostridioides difficile infections.


Assuntos
Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Testes Diagnósticos de Rotina , Europa (Continente) , Fezes/microbiologia , Humanos , Técnicas de Amplificação de Ácido Nucleico , Testes Imediatos , Estudos Prospectivos , Sensibilidade e Especificidade
2.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28411223

RESUMO

Bacteriophage-based assays and biosensors rival traditional antibody-based immunoassays for detection of low-level Salmonella contaminations. In this study, we harnessed the binding specificity of the long tail fiber (LTF) from bacteriophage S16 as an affinity molecule for the immobilization, enrichment, and detection of Salmonella We demonstrate that paramagnetic beads (MBs) coated with recombinant gp37-gp38 LTF complexes (LTF-MBs) are highly effective tools for rapid affinity magnetic separation and enrichment of Salmonella Within 45 min, the LTF-MBs consistently captured over 95% of Salmonella enterica serovar Typhimurium cells from suspensions containing from 10 to 105 CFU · ml-1, and they yielded equivalent recovery rates (93% ± 5%, n = 10) for other Salmonella strains tested. LTF-MBs also captured Salmonella cells from various food sample preenrichments, allowing the detection of initial contaminations of 1 to 10 CFU per 25 g or ml. While plating of bead-captured cells allowed ultrasensitive but time-consuming detection, the integration of LTF-based enrichment into a sandwich assay with horseradish peroxidase-conjugated LTF (HRP-LTF) as a detection probe produced a rapid and easy-to-use Salmonella detection assay. The novel enzyme-linked LTF assay (ELLTA) uses HRP-LTF to label bead-captured Salmonella cells for subsequent identification by HRP-catalyzed conversion of chromogenic 3,3',5,5'-tetramethylbenzidine substrate. The color development was proportional for Salmonella concentrations between 102 and 107 CFU · ml-1 as determined by spectrophotometric quantification. The ELLTA assay took 2 h to complete and detected as few as 102 CFU · ml-1S Typhimurium cells. It positively identified 21 different Salmonella strains, with no cross-reactivity for other bacteria. In conclusion, the phage-based ELLTA represents a rapid, sensitive, and specific diagnostic assay that appears to be superior to other currently available tests.IMPORTANCE The incidence of foodborne diseases has increased over the years, resulting in major global public health issues. Conventional methods for pathogen detection can be laborious and expensive, and they require lengthy preenrichment steps. Rapid enrichment-based diagnostic assays, such as immunomagnetic separation, can reduce detection times while also remaining sensitive and specific. A critical component in these tests is implementing affinity molecules that retain the ability to specifically capture target pathogens over a wide range of in situ applications. The protein complex that forms the distal tip of the bacteriophage S16 long tail fiber is shown here to represent a highly sensitive affinity molecule for the specific enrichment and detection of Salmonella Phage-encoded long tail fibers have huge potential for development as novel affinity molecules for robust and specific diagnostics of a vast spectrum of bacteria.


Assuntos
Bacteriófagos/metabolismo , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Separação Imunomagnética/métodos , Salmonella typhimurium/isolamento & purificação , Proteínas da Cauda Viral/metabolismo , Bacteriófagos/genética , Técnicas Biossensoriais/instrumentação , Microbiologia de Alimentos , Peroxidase do Rábano Silvestre/química , Imunoensaio/instrumentação , Separação Imunomagnética/instrumentação , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...