Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Eur J Paediatr Neurol ; 41: 91-98, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36410285

RESUMO

Vici syndrome (OMIM 242840) is a very rare autosomal recessive multisystem disorder first described in 1988. In 2013, bi-allelic loss-of-function mutations in EPG5 were reported to cause Vici syndrome. Five principal diagnostic features of Vici syndrome have been proposed: agenesis of the corpus callosum, cataracts, cardiomyopathy, hypopigmentation, and combined immunodeficiency. We identified 15 patients carrying a homozygous founder missense variant in EPG5 who all exhibit a less severe clinical phenotype than classic Vici syndrome. All 15 show typical brain abnormalities on MRI. The homozygous founder variant in EPG5 they carry results in a shorter in-frame transcript and truncated, but likely still residual, EPG5 protein. We speculate that the residual EPG5 protein explains their attenuated phenotype, which is consistent with two previous observations that low expression of EPG5 can lead to an attenuated Vici syndrome phenotype. We propose renaming this condition EPG5-related neurodevelopmental disorder to emphasize the clinical variability of patients with bi-allelic mutations in EPG5.


Assuntos
Catarata , Humanos , Catarata/genética , Fenótipo , Homozigoto , Corpo Caloso , Proteínas Relacionadas à Autofagia , Proteínas de Transporte Vesicular/genética
2.
Genet Med ; 22(1): 124-131, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31316167

RESUMO

PURPOSE: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing. METHODS: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups. RESULTS: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups. CONCLUSIONS: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.


Assuntos
Aracnodactilia/diagnóstico , Contratura/diagnóstico , Fibrilina-2/genética , Análise de Sequência de DNA/métodos , Aracnodactilia/genética , Criança , Contratura/genética , Diagnóstico Diferencial , Diagnóstico Precoce , Feminino , Testes Genéticos , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Fenótipo , Estudos Retrospectivos , Sensibilidade e Especificidade
3.
Proc Natl Acad Sci U S A ; 115(51): 13021-13026, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30487221

RESUMO

The respiratory rhythm is generated by the preBötzinger complex in the medulla oblongata, and is modulated by neurons in the retrotrapezoid nucleus (RTN), which are essential for accelerating respiration in response to high CO2 Here we identify a LBX1 frameshift (LBX1FS ) mutation in patients with congenital central hypoventilation. The mutation alters the C-terminal but not the DNA-binding domain of LBX1 Mice with the analogous mutation recapitulate the breathing deficits found in humans. Furthermore, the mutation only interferes with a small subset of Lbx1 functions, and in particular with development of RTN neurons that coexpress Lbx1 and Phox2b. Genome-wide analyses in a cell culture model show that Lbx1FS and wild-type Lbx1 proteins are mostly bound to similar sites, but that Lbx1FS is unable to cooperate with Phox2b. Thus, our analyses on Lbx1FS (dys)function reveals an unusual pathomechanism; that is, a mutation that selectively interferes with the ability of Lbx1 to cooperate with Phox2b, and thus impairs the development of a small subpopulation of neurons essential for respiratory control.


Assuntos
Mutação da Fase de Leitura , Proteínas de Homeodomínio/genética , Hipoventilação/congênito , Proteínas Musculares/fisiologia , Neurônios/patologia , Apneia do Sono Tipo Central/etiologia , Fatores de Transcrição/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/metabolismo , Humanos , Hipoventilação/etiologia , Hipoventilação/metabolismo , Hipoventilação/patologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Linhagem , Respiração , Apneia do Sono Tipo Central/metabolismo , Apneia do Sono Tipo Central/patologia , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
4.
Nat Commun ; 9(1): 3087, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082715

RESUMO

Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta. SLC10A7 encodes a 10-transmembrane-domain transporter located at the plasma membrane. Functional studies in vitro demonstrate that SLC10A7 mutations reduce SLC10A7 protein expression. We generate a Slc10a7-/- mouse model, which displays shortened long bones, growth plate disorganization and tooth enamel anomalies, recapitulating the human phenotype. Furthermore, we identify decreased heparan sulfate levels in Slc10a7-/- mouse cartilage and patient fibroblasts. Finally, we find an abnormal N-glycoprotein electrophoretic profile in patient blood samples. Together, our findings support the involvement of SLC10A7 in glycosaminoglycan synthesis and specifically in skeletal development.


Assuntos
Amelogênese Imperfeita/genética , Doenças do Desenvolvimento Ósseo/genética , Mutação , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Animais , Peso Corporal , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Modelos Animais de Doenças , Eletroforese , Exoma , Glicoproteínas/química , Células HEK293 , Humanos , Lactente , Camundongos , Camundongos Knockout , Osteocondrodisplasias/genética
5.
Am J Med Genet A ; 176(6): 1455-1462, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29693785

RESUMO

KIAA2022 is an X-linked intellectual disability (XLID) syndrome affecting males more severely than females. Few males with KIAA2022 variants and XLID have been reported. We present a clinical report of two unrelated males, with two nonsense KIAA2022 pathogenic variants, with profound intellectual disabilities, limited language development, strikingly similar autistic behavior, delay in motor milestones, and postnatal growth restriction. Patient 1, 19-years-old, has long ears, deeply set eyes with keratoconus, strabismus, a narrow forehead, anteverted nares, café-au-lait spots, macroglossia, thick vermilion of the upper and lower lips, and prognathism. He has gastroesophageal reflux, constipation with delayed rectosigmoid colonic transit time, difficulty regulating temperature, several musculoskeletal issues, and a history of one grand mal seizure. Patient 2, 10-years-old, has mild dysmorphic features, therapy resistant vomiting with diminished motility of the stomach, mild constipation, cortical visual impairment with intermittent strabismus, axial hypotonia, difficulty regulating temperature, and cutaneous mastocytosis. Genetic testing identified KIAA2022 variant c.652C > T(p.Arg218*) in Patient 1, and a novel nonsense de novo variant c.2707G > T(p.Glu903*) in Patient 2. We also summarized features of all reported males with KIAA2022 variants to date. This report not only adds knowledge of a novel pathogenic variant to the KIAA2022 variant database, but also likely extends the spectrum by describing novel dysmorphic features and medical conditions including macroglossia, café-au-lait spots, keratoconus, severe cutaneous mastocytosis, and motility problems of the GI tract, which may help physicians involved in the care of patients with this syndrome. Lastly, we describe the power of social media in bringing families with rare medical conditions together.


Assuntos
Deficiências do Desenvolvimento/genética , Mutação , Proteínas do Tecido Nervoso/genética , Comportamento Agonístico/efeitos dos fármacos , Criança , Pré-Escolar , Deficiências do Desenvolvimento/etiologia , Face/anormalidades , Gastroenteropatias/etiologia , Gastroenteropatias/genética , Humanos , Masculino
6.
Neurogenetics ; 18(4): 185-194, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28842795

RESUMO

An X-linked condition characterized by the combination of hypomyelinating leukodystrophy and spondylometaphyseal dysplasia (H-SMD) has been observed in only four families, with linkage to Xq25-27, and recent genetic characterization in two families with a common AIFM1 mutation. In our study, 12 patients (6 families) with H-SMD were identified and underwent comprehensive assessment accompanied by whole-exome sequencing (WES). Pedigree analysis in all families was consistent with X-linked recessive inheritance. Presentation typically occurred between 12 and 36 months. In addition to the two disease-defining features of spondylometaphyseal dysplasia and hypomyelination on MRI, common clinical signs and symptoms included motor deterioration, spasticity, tremor, ataxia, dysarthria, cognitive defects, pulmonary hypertension, nystagmus, and vision loss due to retinopathy. The course of the disease was slowly progressive. All patients had maternally inherited or de novo mutations in or near exon 7 of AIFM1, within a region of 70 bp, including synonymous and intronic changes. AIFM1 mutations have previously been associated with neurologic presentations as varied as intellectual disability, hearing loss, neuropathy, and striatal necrosis, while AIFM1 mutations in this small region present with a distinct phenotype implicating bone. Analysis of cell lines derived from four patients identified significant reductions in AIFM1 mRNA and protein levels in osteoblasts. We hypothesize that AIFM1 functions in bone metabolism and myelination and is responsible for the unique phenotype in this condition.


Assuntos
Fator de Indução de Apoptose/genética , Genes Ligados ao Cromossomo X/genética , Predisposição Genética para Doença , Mutação/genética , Humanos , Deficiência Intelectual/genética , Masculino , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Osteocondrodisplasias/genética , Linhagem , Fenótipo , Análise de Sequência de DNA
7.
Am J Hum Genet ; 97(3): 483-92, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26320891

RESUMO

Progeroid disorders overlapping with De Barsy syndrome (DBS) are collectively denoted as autosomal-recessive cutis laxa type 3 (ARCL3). They are caused by biallelic mutations in PYCR1 or ALDH18A1, encoding pyrroline-5-carboxylate reductase 1 and pyrroline-5-carboxylate synthase (P5CS), respectively, which both operate in the mitochondrial proline cycle. We report here on eight unrelated individuals born to non-consanguineous families clinically diagnosed with DBS or wrinkly skin syndrome. We found three heterozygous mutations in ALDH18A1 leading to amino acid substitutions of the same highly conserved residue, Arg138 in P5CS. A de novo origin was confirmed in all six probands for whom parental DNA was available. Using fibroblasts from affected individuals and heterologous overexpression, we found that the P5CS-p.Arg138Trp protein was stable and able to interact with wild-type P5CS but showed an altered sub-mitochondrial distribution. A reduced size upon native gel electrophoresis indicated an alteration of the structure or composition of P5CS mutant complex. Furthermore, we found that the mutant cells had a reduced P5CS enzymatic activity leading to a delayed proline accumulation. In summary, recurrent de novo mutations, affecting the highly conserved residue Arg138 of P5CS, cause an autosomal-dominant form of cutis laxa with progeroid features. Our data provide insights into the etiology of cutis laxa diseases and will have immediate impact on diagnostics and genetic counseling.


Assuntos
Opacidade da Córnea/genética , Opacidade da Córnea/patologia , Cútis Laxa/genética , Cútis Laxa/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto/genética , Ornitina-Oxo-Ácido Transaminase/genética , Sequência de Aminoácidos , Sequência de Bases , Genes Dominantes/genética , Humanos , Dados de Sequência Molecular , Linhagem , Prolina/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Pele/patologia , Especificidade da Espécie
8.
Eur J Hum Genet ; 22(11): 1272-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24424121

RESUMO

Myhre syndrome is characterized by short stature, brachydactyly, facial features, pseudomuscular hypertrophy, joint limitation and hearing loss. We identified SMAD4 mutations as the cause of Myhre syndrome. SMAD4 mutations have also been identified in laryngotracheal stenosis, arthropathy, prognathism and short stature syndrome (LAPS). This study aimed to review the features of Myhre and LAPS patients to define the clinical spectrum of SMAD4 mutations. We included 17 females and 15 males ranging in age from 8 to 48 years. Thirty were diagnosed with Myhre syndrome and two with LAPS. SMAD4 coding sequence was analyzed by Sanger sequencing. Clinical and radiological features were collected from a questionnaire completed by the referring physicians. All patients displayed a typical facial gestalt, thickened skin, joint limitation and muscular pseudohypertrophy. Growth retardation was common (68.7%) and was variable in severity (from -5.5 to -2 SD), as was mild-to-moderate intellectual deficiency (87.5%) with additional behavioral problems in 56.2% of the patients. Significant health concerns like obesity, arterial hypertension, bronchopulmonary insufficiency, laryngotracheal stenosis, pericarditis and early death occurred in four. Twenty-nine patients had a de novo heterozygous SMAD4 mutation, including both patients with LAPS. In 27 cases mutation affected Ile500 and in two cases Arg496. The three patients without SMAD4 mutations had typical findings of Myhre syndrome. Myhre-LAPS syndrome is a clinically homogenous condition with life threatening complications in the course of the disease. Our identification of SMAD4 mutations in 29/32 cases confirms that SMAD4 is the major gene responsible for Myhre syndrome.


Assuntos
Criptorquidismo/genética , Transtornos do Crescimento/genética , Deformidades Congênitas da Mão/genética , Hipertrofia/genética , Deficiência Intelectual/genética , Artropatias/genética , Proteína Smad4/genética , Adolescente , Adulto , Criança , Fácies , Feminino , Seguimentos , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência de DNA , Adulto Jovem
9.
J Med Genet ; 49(5): 307-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22581968

RESUMO

BACKGROUND: Peroxisomes are organelles that proliferate continuously and play an indispensable role in human metabolism. Consequently, peroxisomal gene defects can cause multiple, often severe disorders, including the peroxisome biogenesis disorders. Currently, 13 different PEX proteins have been implicated in various stages of peroxisome assembly and protein import. Defects in any of these proteins result in a peroxisome biogenesis disorder. The authors present here a novel genetic defect specifically affecting the division of peroxisomes. METHODS: The authors have studied biochemical and microscopical peroxisomal parameters in cultured patient fibroblasts, sequenced candidate PEX genes and determined the consequence of the identified PEX11ß gene defect on peroxisome biogenesis in patient fibroblasts at different temperatures. RESULTS: The patient presented with congenital cataracts, mild intellectual disability, progressive hearing loss, sensory nerve involvement, gastrointestinal problems and recurrent migraine-like episodes. Although microscopical investigations of patient fibroblasts indicated a clear defect in peroxisome division, all biochemical parameters commonly used for diagnosing peroxisomal disorders were normal. After excluding mutations in all PEX genes previously implicated in peroxisome biogenesis disorders, it was found that the defect was caused by a homozygous non-sense mutation in the PEX11ß gene. The peroxisome division defect was exacerbated when the patient's fibroblasts were cultured at 40°C, which correlated with a marked decrease in the expression of PEX11γ. CONCLUSIONS: This novel isolated defect in peroxisome division expands the clinical and genetic spectrum of peroxisomal disorders and indicates that peroxisomal defects exist, which cannot be diagnosed by standard laboratory investigations.


Assuntos
Proteínas de Membrana/genética , Mutação , Transtornos Peroxissômicos/genética , Adulto , Sequência de Bases , Estudos de Casos e Controles , Células Cultivadas , Análise Mutacional de DNA , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Teste de Complementação Genética , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Isoformas de Proteínas , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Temperatura , Transfecção
10.
Am J Med Genet A ; 158A(3): 553-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22315194

RESUMO

Hyperphosphatasia with neurologic deficit (Mabry syndrome) was first described in a single family (OMIM#239300) by Mabry et al. [1970]. Although considered rare at the time, more than 20 individuals with the triad of developmental disability, seizures, and hyperphosphatasia have been identified world-wide. The 1-6 mannosyltransferase 2, phosphatidylinositol glycan V (PIGV) gene has been found to be disrupted in some patients with the additional feature of brachytelephalangy. In the present report we identify three patients compound homozygous for PIGV mutations. Two siblings were found to be compound heterozygotes for c.467G > A and c.494C > A in exon 3 of PIGV (the c.494C > A PIGV variant is novel). A third patient with similar phenotype, was a compound heterozygote for the known c.1022C > A/c.1022C > T (p.Ala341Glu/p.Ala341Val) mutation. This patient was also noted to have lysosomal storage in cultured fibroblasts. In contrast, the fourth patient who had no apparent hand abnormality, was found to be heterozygous for a previously unclassified c.1369C > T mutation in exon 4 of the PIGV gene, resulting in a p.Leu457Phe substitution in the catalytic domain of the enzyme. Unless this variant has a dominant negative effect, however, it seems likely that another GPI biosynthesis gene variant may contribute to the disorder, possibly through digenic inheritance. Since slightly fewer than half of the nine cases presented in this report and our previous report [Thompson et al., 2010] have PIGV mutations, we suggest that other genes critical to GPI anchor biosynthesis are likely to be disrupted in some patients.


Assuntos
Doenças do Sistema Nervoso/genética , Osteíte Deformante/genética , Convulsões/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Síndrome
11.
Nat Genet ; 44(3): 277-84, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22306653

RESUMO

Perlman syndrome is a congenital overgrowth syndrome inherited in an autosomal recessive manner that is associated with Wilms tumor susceptibility. We mapped a previously unknown susceptibility locus to 2q37.1 and identified germline mutations in DIS3L2, a homolog of the Schizosaccharomyces pombe dis3 gene, in individuals with Perlman syndrome. Yeast dis3 mutant strains have mitotic abnormalities. Yeast Dis3 and its human homologs, DIS3 and DIS3L1, have exoribonuclease activity and bind to the core RNA exosome complex. DIS3L2 has a different intracellular localization and lacks the PIN domain found in DIS3 and DIS3L1; nevertheless, we show that DIS3L2 has exonuclease activity. DIS3L2 inactivation was associated with mitotic abnormalities and altered expression of mitotic checkpoint proteins. DIS3L2 overexpression suppressed the growth of human cancer cell lines, and knockdown enhanced the growth of these cells. We also detected evidence of DIS3L2 mutations in sporadic Wilms tumor. These observations suggest that DIS3L2 has a critical role in RNA metabolism and is essential for the regulation of cell growth and division.


Assuntos
Cromossomos Humanos Par 2/genética , Exorribonucleases/genética , Macrossomia Fetal/genética , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa/genética , Neoplasias Renais/genética , Tumor de Wilms/genética , Adolescente , Sequência de Bases , Divisão Celular/genética , Proliferação de Células , Pré-Escolar , Técnicas de Silenciamento de Genes , Genes cdc/genética , Células HeLa , Humanos , Lactente , Recém-Nascido , Dados de Sequência Molecular , RNA/metabolismo , Análise de Sequência de DNA
12.
Nat Genet ; 44(4): 445-9, S1, 2012 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-22366787

RESUMO

Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening identified nonsynonymous SMARCA2 mutations in 36 of 44 individuals with NBS; these mutations were confirmed to be de novo when parental samples were available. SMARCA2 encodes the core catalytic unit of the SWI/SNF ATP-dependent chromatin remodeling complex that is involved in the regulation of gene transcription. The mutations cluster within sequences that encode ultra-conserved motifs in the catalytic ATPase region of the protein. These alterations likely do not impair SWI/SNF complex assembly but may be associated with disrupted ATPase activity. The identification of SMARCA2 mutations in humans provides insight into the function of the Snf2 helicase family.


Assuntos
Proteínas Cromossômicas não Histona/genética , Deformidades Congênitas do Pé/genética , Hipotricose/genética , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Fácies , Genes Reguladores , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Adulto Jovem
13.
Am J Hum Genet ; 89(5): 634-43, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22019273

RESUMO

A subset of ciliopathies, including Sensenbrenner, Jeune, and short-rib polydactyly syndromes are characterized by skeletal anomalies accompanied by multiorgan defects such as chronic renal failure and retinitis pigmentosa. Through exome sequencing we identified compound heterozygous mutations in WDR19 in a Norwegian family with Sensenbrenner syndrome. In a Dutch family with the clinically overlapping Jeune syndrome, a homozygous missense mutation in the same gene was found. Both families displayed a nephronophthisis-like nephropathy. Independently, we also identified compound heterozygous WDR19 mutations by exome sequencing in a Moroccan family with isolated nephronophthisis. WDR19 encodes IFT144, a member of the intraflagellar transport (IFT) complex A that drives retrograde ciliary transport. We show that IFT144 is absent from the cilia of fibroblasts from one of the Sensenbrenner patients and that ciliary abundance and morphology is perturbed, demonstrating the ciliary pathogenesis. Our results suggest that isolated nephronophthisis, Jeune, and Sensenbrenner syndromes are clinically overlapping disorders that can result from a similar molecular cause.


Assuntos
Cílios , Displasia Ectodérmica/genética , Mutação de Sentido Incorreto , Doenças Renais Policísticas/genética , Proteínas/genética , Síndrome de Costela Curta e Polidactilia/genética , Doenças Torácicas/genética , Adolescente , Adulto , Criança , Cílios/genética , Cílios/patologia , Anormalidades Craniofaciais/genética , Proteínas do Citoesqueleto , Exoma/genética , Feminino , Fibroblastos/metabolismo , Flagelos/genética , Flagelos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Dados de Sequência Molecular , Marrocos , Países Baixos , Noruega , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Doenças Renais Policísticas/congênito , Adulto Jovem
14.
Am J Hum Genet ; 89(1): 7-14, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21683322

RESUMO

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFß-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFß signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFß signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Nanismo/genética , Anormalidades do Olho/genética , Deformidades Congênitas dos Membros/genética , Proteínas dos Microfilamentos/genética , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Tecido Conjuntivo/anormalidades , Análise Mutacional de DNA , Éxons , Proteínas da Matriz Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Imunofluorescência , Heterozigoto , Humanos , Corpos de Inclusão/genética , Síndrome de Marfan/genética , Microfibrilas/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Fenótipo , Estrutura Terciária de Proteína , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Adulto Jovem
15.
Hum Mutat ; 32(2): E2018-25, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280141

RESUMO

Kabuki Syndrome (KS) is a rare syndrome characterized by intellectual disability and multiple congenital abnormalities, in particular a distinct dysmorphic facial appearance. KS is caused by mutations in the MLL2 gene, encoding an H3K4 histone methyl transferase which acts as an epigenetic transcriptional activator during growth and development. Direct sequencing of all 54 exons of the MLL2 gene in 45 clinically well-defined KS patients identified 34 (75.6%) different mutations. One mutation has been described previously, all others are novel. Clinically, all KS patients were sporadic, and mutations were de novo for all 27 families for which both parents were available. We detected nonsense (n=11), frameshift (n=17), splice site (n=4) and missense (n=2) mutations, predicting a high frequency of absent or non-functional MLL2 protein. Interestingly, both missense mutations located in the C-terminal conserved functional domains of the protein. Phenotypically our study indicated a statistically significant difference in the presence of a distinct facial appearance (p=0.0143) and growth retardation (p=0.0040) when comparing KS patients with an MLL2 mutation compared to patients without a mutation. Our data double the number of MLL2 mutations in KS reported so far and widen the spectrum of MLL2 mutations and disease mechanisms in KS.


Assuntos
Proteínas de Ligação a DNA/genética , Mutação , Proteínas de Neoplasias/genética , Anormalidades Múltiplas/genética , Face/anormalidades , Feminino , Doenças Hematológicas/genética , Humanos , Masculino , Doenças Vestibulares/genética
16.
Eur J Hum Genet ; 18(9): 999-1005, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20531442

RESUMO

Holoprosencephaly is a severe malformation of the brain characterized by abnormal formation and separation of the developing central nervous system. The prevalence is 1:250 during early embryogenesis, the live-born prevalence is 1:16 000. The etiology of HPE is extremely heterogeneous and can be teratogenic or genetic. We screened four known HPE genes in a Dutch cohort of 86 non-syndromic HPE index cases, including 53 family members. We detected 21 mutations (24.4%), 3 in SHH, 9 in ZIC2 and 9 in SIX3. Eight mutations involved amino-acid substitutions, 7 ins/del mutations, 1 frame-shift, 3 identical poly-alanine tract expansions and 2 gene deletions. Pathogenicity of mutations was presumed based on de novo character, predicted non-functionality of mutated proteins, segregation of mutations with affected family-members or combinations of these features. Two mutations were reported previously. SNP array confirmed detected deletions; one spanning the ZIC2/ZIC5 genes (approx. 100 kb) the other a 1.45 Mb deletion including SIX2/SIX3 genes. The mutation percentage (24%) is comparable with previous reports, but we detected significantly less mutations in SHH: 3.5 vs 10.7% (P=0.043) and significantly more in SIX3: 10.5 vs 4.3% (P=0.018). For TGIF1 and ZIC2 mutation the rate was in conformity with earlier reports. About half of the mutations were de novo, one was a germ line mosaic. The familial mutations displayed extensive heterogeneity in clinical manifestation. Of seven familial index patients only two parental carriers showed minor HPE signs, five were completely asymptomatic. Therefore, each novel mutation should be considered as a risk factor for clinically manifest HPE, with the caveat of reduced clinical penetrance.


Assuntos
Proteínas do Olho/genética , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Proteínas de Homeodomínio/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Feminino , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Proteína Homeobox SIX3
17.
J Med Genet ; 47(5): 299-311, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20452996

RESUMO

BACKGROUND: Chromosome 17p13.3 contains extensive repetitive sequences and is a recognised region of genomic instability. Haploinsufficiency of PAFAH1B1 (encoding LIS1) causes either isolated lissencephaly sequence or Miller-Dieker syndrome, depending on the size of the deletion. More recently, both microdeletions and microduplications mapping to the Miller-Dieker syndrome telomeric critical region have been identified and associated with distinct but overlapping phenotypes. METHODS: Genome-wide microarray screening was performed on 7678 patients referred with unexplained learning difficulties and/or autism, with or without other congenital abnormalities. Eight and five unrelated individuals, respectively, were identified with microdeletions and microduplications in 17p13.3. RESULTS: Comparisons with six previously reported microdeletion cases identified a 258 kb critical region, encompassing six genes including CRK (encoding Crk) and YWHAE (encoding 14-3-3epsilon). Clinical features included growth retardation, facial dysmorphism and developmental delay. Notably, one individual with only subtle facial features and an interstitial deletion involving CRK but not YWHAE suggested that a genomic region spanning 109 kb, encompassing two genes (TUSC5 and YWHAE), is responsible for the main facial dysmorphism phenotype. Only the microduplication phenotype included autism. The microduplication minimal region of overlap for the new and previously reported cases spans 72 kb encompassing a single gene, YWHAE. These genomic rearrangements were not associated with low-copy repeats and are probably due to diverse molecular mechanisms. CONCLUSIONS: The authors further characterise the 17p13.3 microdeletion and microduplication phenotypic spectrum and describe a smaller critical genomic region allowing identification of candidate genes for the distinctive facial dysmorphism (microdeletions) and autism (microduplications) manifestations.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 17/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Lisencefalia/genética , Adolescente , Encéfalo/anormalidades , Criança , Pré-Escolar , Deleção Cromossômica , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/patologia , Anormalidades Craniofaciais/genética , Feminino , Humanos , Lactente , Deficiência Intelectual/genética , Lisencefalia/patologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Fenótipo , Duplicações Segmentares Genômicas
18.
Am J Med Genet A ; 152A(4): 863-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20358595

RESUMO

Multiple epiphyseal dysplasia (MED) is a clinically variable and genetically heterogeneous disease that is characterized by mild short stature and early onset osteoarthritis. Autosomal dominant forms are caused by mutations in the genes that encode type IX collagen, cartilage oligomeric matrix protein, and matrilin-3: COL9A1, COL9A2, COL9A3, COMP, and MATN3, respectively. Splicing mutations have been identified in all three genes encoding type IX collagen and are restricted to specific exons encoding an equivalent region of the COL3 domain in all three alpha(IX) chains. MED has been associated with mild myopathy in some families, in particular one family with a COL9A3 mutation and two families with C-terminal COMP mutations. In this study we have identified COL9A2 mutations in two families with MED that also have osteochondritis dissecans and mild myopathy. This study therefore extends the range of gene-mutations that can cause MED-related myopathy. (c) 2010 Wiley-Liss, Inc.


Assuntos
Colágeno Tipo IX/genética , Doenças Musculares/complicações , Doenças Musculares/genética , Mutação/genética , Osteocondrite Dissecante/genética , Osteocondrodisplasias/complicações , Osteocondrodisplasias/genética , Adulto , Biópsia , Criança , Pré-Escolar , Família , Feminino , Humanos , Recém-Nascido , Masculino , Músculos/patologia , Doenças Musculares/diagnóstico por imagem , Osteocondrite Dissecante/complicações , Osteocondrite Dissecante/diagnóstico por imagem , Osteocondrodisplasias/diagnóstico por imagem , Linhagem , Gravidez , Radiografia
19.
J Med Genet ; 47(3): 169-75, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19846429

RESUMO

OBJECTIVES: To develop a comprehensive mutation analysis system with a high rate of detection, to develop a tool to predict the chance of detecting a mutation in the L1CAM gene, and to look for genotype-phenotype correlations in the X-linked recessive disorder, L1 syndrome. METHODS: DNA from 367 referred patients was analysed for mutations in the coding sequences of the gene. A subgroup of 100 patients was also investigated for mutations in regulatory sequences and for large duplications. Clinical data for 106 patients were collected and used for statistical analysis. RESULTS: 68 different mutations were detected in 73 patients. In patients with three or more clinical characteristics of L1 syndrome, the mutation detection rate was 66% compared with 16% in patients with fewer characteristics. The detection rate was 51% in families with more than one affected relative, and 18% in families with one affected male. A combination of these two factors resulted in an 85% detection rate (OR 10.4, 95% CI 3.6 to 30.1). The type of mutation affects the severity of L1 syndrome. Children with a truncating mutation were more likely to die before the age of 3 than those with a missense mutation (52% vs 8%; p=0.02). CONCLUSIONS: We developed a comprehensive mutation detection system with a detection rate of almost 20% in unselected patients and up to 85% in a selected group. Using the patients' clinical characteristics and family history, clinicians can accurately predict the chance of finding a mutation. A genotype-phenotype correlation was confirmed. The occurrence of (maternal) germline mosaicism was proven.


Assuntos
Análise Mutacional de DNA/métodos , Estudos de Associação Genética , Aconselhamento Genético/métodos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Sequência de Bases , Criança , Pré-Escolar , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Mutação em Linhagem Germinativa , Humanos , Lactente , Recém-Nascido , Masculino , Mosaicismo , Molécula L1 de Adesão de Célula Nervosa/análise , Guias de Prática Clínica como Assunto , Síndrome
20.
Am J Med Genet A ; 149A(8): 1628-40, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19606471

RESUMO

Nicolaides-Baraitser syndrome (NBS) is an infrequently described condition, thus far reported in five cases. In order to delineate the phenotype and its natural history in more detail, we gathered data on 18 hitherto unreported patients through a multi-center collaborative study, and follow-up data of the earlier reported patients. A detailed comparison of the 23 patients is provided. NBS is a distinct and recognizable entity, and probably has been underdiagnosed until now. Main clinical features are severe mental retardation with absent or limited speech, seizures, short stature, sparse hair, typical facial characteristics, brachydactyly, prominent finger joints and broad distal phalanges. Some of the features are progressive with time. The main differential diagnosis is Coffin-Siris syndrome. There is no important gender difference in occurrence and frequency of the syndrome, and all cases have been sporadic thus far. Microarray analysis performed in 14 of the patients gave normal results. Except for the progressive nature there are no clues to the cause.


Assuntos
Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/etiologia , Adolescente , Adulto , Criança , Pré-Escolar , Progressão da Doença , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Radiografia , Síndrome , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...