Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37627492

RESUMO

Familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is a rare genetic disease caused by the loss of function mutations in the LCAT gene. LCAT deficiency is characterized by an abnormal lipoprotein profile with severe reduction in plasma levels of high-density lipoprotein (HDL) cholesterol and the accumulation of lipoprotein X (LpX). Renal failure is the major cause of morbidity and mortality in FLD patients; the pathogenesis of renal disease is only partly understood, but abnormalities in the lipoprotein profile could play a role in disease onset and progression. Serum and lipoprotein fractions from LCAT deficient carriers and controls were tested for renal toxicity on podocytes and tubular cells, and the underlying mechanisms were investigated at the cellular level. Both LpX and HDL from LCAT-deficient carriers triggered oxidative stress in renal cells, which culminated in cell apoptosis. These effects are partly explained by lipoprotein enrichment in unesterified cholesterol and ceramides, especially in the HDL fraction. Thus, alterations in lipoprotein composition could explain some of the nephrotoxic effects of LCAT deficient lipoproteins on podocytes and tubular cells.

2.
J Lipid Res ; 63(7): 100232, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598637

RESUMO

Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0-37.8] mg/dl) and slightly reduced in heterozygotes (218 [153-234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.


Assuntos
Deficiência da Lecitina Colesterol Aciltransferase , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase/metabolismo , Apolipoproteínas B , Colesterol/metabolismo , Ésteres do Colesterol , Humanos , Deficiência da Lecitina Colesterol Aciltransferase/genética , Lipoproteínas , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase 2
3.
J Intern Med ; 291(3): 364-370, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34761839

RESUMO

BACKGROUND: Kidney failure is the major cause of morbidity and mortality in familial lecithin:cholesterol acyltransferase deficiency (FLD), a rare inherited lipid disorder with no cure. Lipoprotein X (LpX), an abnormal lipoprotein, is primarily accountable for nephrotoxicity. METHODS: CER-001 was tested in an FLD patient with dramatic kidney disease for 12 weeks. RESULTS: Infusions of CER-001 normalized the lipoprotein profile, with a disappearance of the abnormal LpX in favour of normal-sized LDL. The worsening of kidney function was slowed by the treatment, and kidney biopsy showed a slight reduction of lipid deposits and a stabilization of the disease. In vitro experiments demonstrate that CER-001 progressively reverts lipid accumulation in podocytes by a dual effect: remodelling plasma lipoproteins and removing LpX-induced lipid deposit. CONCLUSION: This study demonstrates that CER-001 may represent a therapeutic option in FLD patients. It also has the potential to be beneficial in other renal diseases characterized by kidney lipid deposits.


Assuntos
Deficiência da Lecitina Colesterol Aciltransferase , Apolipoproteína A-I/uso terapêutico , Humanos , Rim/patologia , Deficiência da Lecitina Colesterol Aciltransferase/tratamento farmacológico , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteínas , Fosfatidilcolina-Esterol O-Aciltransferase/farmacologia , Fosfatidilcolina-Esterol O-Aciltransferase/uso terapêutico , Fosfolipídeos , Proteínas Recombinantes
4.
Atherosclerosis ; 323: 44-53, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33836456

RESUMO

BACKGROUND AND AIMS: A decrease in high-density lipoprotein (HDL)-cholesterol concentrations during transgender hormone therapy has been shown. However, the ability of HDL to remove cholesterol from arterial wall macrophages, termed cholesterol efflux capacity (CEC), has proven to be a better predictor of cardiovascular disease (CVD) largely independently of HDL-concentrations. In addition, the serum capacity to load macrophages with cholesterol (cholesterol loading capacity, CLC) represents an index of pro-atherogenic potential. As transgender individuals are exposed to lifelong exogenous hormone therapy (HT), it becomes of interest to study whether HDL-CEC and serum CLC are affected by HT. HDL-CEC and serum CLC have been evaluated in 15 trans men treated with testosterone and in 15 trans women treated with estradiol and cyproterone acetate at baseline and after 12 months of HT. METHODS: Total HDL-CEC from macrophages and its major contributors, the ATP-binding cassette transporters (ABC) A1 and ABCG1 HDL-CEC and HDL-CEC by aqueous diffusion were determined by a radioisotopic assay. CLC was evaluated in human THP-1 macrophages. RESULTS: In trans women, total HDL-CEC decreased by 10.8% (95%CI: -14.3;-7.3; p < 0.001), ABCA1 HDL-CEC by 23.8% (-34.7; -12.9; p < 0.001) and aqueous diffusion HDL-CEC by 4.8% (-8.4;-1.1; p < 0.01). In trans men, only aqueous diffusion HDL-CEC decreased significantly, -9.8% (-15.7;-3.9; p < 0.01). ABCG1 HDL-CEC did not change in either group. Serum CLC and HDL subclass distribution were not modified by HT in both groups. CONCLUSIONS: Total HDL-CEC decreased during HT in trans women, with a specific reduction in ABCA1 CEC. This finding might contribute to a higher CVD risk.


Assuntos
Aterosclerose , Terapia de Reposição Hormonal , Pessoas Transgênero , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transporte Biológico , Colesterol , HDL-Colesterol , Feminino , Humanos , Masculino
5.
Cells ; 10(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807271

RESUMO

Dyslipidemia is a typical trait of patients with chronic kidney disease (CKD) and it is typically characterized by reduced high-density lipoprotein (HDL)-cholesterol(c) levels. The low HDL-c concentration is the only lipid alteration associated with the progression of renal disease in mild-to-moderate CKD patients. Plasma HDL levels are not only reduced but also characterized by alterations in composition and structure, which are responsible for the loss of atheroprotective functions, like the ability to promote cholesterol efflux from peripheral cells and antioxidant and anti-inflammatory proprieties. The interconnection between HDL and renal function is confirmed by the fact that genetic HDL defects can lead to kidney disease; in fact, mutations in apoA-I, apoE, apoL, and lecithin-cholesterol acyltransferase (LCAT) are associated with the development of renal damage. Genetic LCAT deficiency is the most emblematic case and represents a unique tool to evaluate the impact of alterations in the HDL system on the progression of renal disease. Lipid abnormalities detected in LCAT-deficient carriers mirror the ones observed in CKD patients, which indeed present an acquired LCAT deficiency. In this context, circulating LCAT levels predict CKD progression in individuals at early stages of renal dysfunction and in the general population. This review summarizes the main alterations of HDL in CKD, focusing on the latest update of acquired and genetic LCAT defects associated with the progression of renal disease.


Assuntos
Rim/metabolismo , Lipoproteínas HDL/metabolismo , Progressão da Doença , Humanos , Lipoproteínas HDL/genética , Mutação/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
6.
Metabolism ; 116: 154464, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309714

RESUMO

OBJECTIVE: CER-001 is an HDL mimetic that has been tested in different pathological conditions, but never with LCAT deficiency. This study was designed to investigate whether the absence of LCAT affects the catabolic fate of CER-001, and to evaluate the effects of CER-001 on kidney disease associated with LCAT deficiency. METHODS: Lcat-/- and wild-type mice received CER-001 (2.5, 5, 10 mg/kg) intravenously for 2 weeks. The plasma lipid/ lipoprotein profile and HDL subclasses were analyzed. In a second set of experiments, Lcat-/- mice were injected with LpX to induce renal disease and treated with CER-001 and then the plasma lipid profile, lipid accumulation in the kidney, albuminuria and glomerular podocyte markers were evaluated. RESULTS: In Lcat-/- mice a decrease in total cholesterol and triglycerides, and an increase in HDL-c was observed after CER-001 treatment. While in wild-type mice CER-001 entered the classical HDL remodeling pathway, in the absence of LCAT it disappeared from the plasma shortly after injection and ended up in the kidney. In a mouse model of renal disease in LCAT deficiency, treatment with CER-001 at 10 mg/kg for one month had beneficial effects not only on the lipid profile, but also on renal disease, by limiting albuminuria and podocyte dysfunction. CONCLUSIONS: Treatment with CER-001 ameliorates the dyslipidemia typically associated with LCAT deficiency and more importantly limits renal damage in a mouse model of renal disease in LCAT deficiency. The present results provide a rationale for using CER-001 in FLD patients.


Assuntos
Apolipoproteína A-I/uso terapêutico , Nefropatias/tratamento farmacológico , Deficiência da Lecitina Colesterol Aciltransferase/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fosfolipídeos/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Animais , Apolipoproteína A-I/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Nefropatias/genética , Nefropatias/patologia , Deficiência da Lecitina Colesterol Aciltransferase/genética , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfolipídeos/farmacologia , Podócitos/efeitos dos fármacos , Podócitos/patologia , Podócitos/fisiologia , Proteínas Recombinantes/farmacologia
7.
J Pharmacol Exp Ther ; 375(3): 463-468, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32980814

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) is a unique plasma enzyme able to esterify cholesterol, and it plays an important role in HDL maturation and promotion of reverse cholesterol transport. Familial LCAT deficiency (FLD; OMIM number 245900) is a rare recessive disease that results from loss-of-function mutations in the LCAT gene and has no cure. In this study, we assessed the in vitro efficacy of a novel small-molecule LCAT activator. Cholesterol esterification rate (CER) and LCAT activity were tested in plasma from six controls and five FLD homozygous carriers of various LCAT mutations at different doses of the compound (0.1, 1, and 10 µg/ml). In control plasma, the compound significantly increased both CER (P < 0.001) and LCAT activity (P = 0.007) in a dose-dependent manner. Both CER and LCAT activity increased by 4- to 5-fold, reaching maximum activation at the dose of 1 µg/ml. Interestingly, Daiichi Sankyo compound produced an increase in CER in two of the five tested LCAT mutants (Leu372--Arg and Val309--Met), while LCAT activity increased in three LCAT mutants (Arg147--Trp, Thr274--Ile and Leu372--Arg); mutant Pro254--Ser was not activated at any of the tested doses. The present findings form the basis for personalized therapeutic interventions in FLD carriers and support the potential LCAT activation in secondary LCAT defects. SIGNIFICANCE STATEMENT: We characterized the pharmacology of a novel small-molecule LCAT activator in vitro on a subset of naturally occurring LCAT mutants. Our findings form the basis for personalized therapeutic interventions for familial LCAT deficiency carriers, who can face severe complications and for whom no cure exists.


Assuntos
Mutação , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Adulto , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Feminino , Humanos , Masculino , Bibliotecas de Moléculas Pequenas/farmacologia
8.
J Clin Med ; 9(7)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708515

RESUMO

Low high-density lipoprotein-cholesterol (HDL-c) is the most remarkable lipid trait both in mild-to-moderate chronic kidney disease (CKD) patients as well as in advanced renal disease stages, and we have previously shown that reduced lecithin:cholesterol acyltransferase (LCAT) concentration is a major determinant of the low HDL phenotype. In the present study, we test the hypothesis that reduced LCAT concentration in CKD contributes to the progression of renal damage. The study includes two cohorts of subjects selected from the PLIC study: a cohort of 164 patients with CKD (NefroPLIC cohort) and a cohort of 164 subjects selected from the PLIC participants with a basal estimated glomerular filtration rate (eGFR) > 60 mL/min/1.73 m2 (PLIC cohort). When the NefroPLIC patients were categorized according to the LCAT concentration, patients in the 1st tertile showed the highest event rate at follow-up with an event hazard ratio significantly higher compared to the 3rd LCAT tertile. Moreover, in the PLIC cohort, subjects in the 1st LCAT tertile showed a significantly faster impairment of kidney function compared to subjects in the 3rd LCAT tertile. Serum from subjects in the 1st LCAT tertile promoted a higher reactive oxygen species (ROS) production in renal cells compared to serum from subjects in the third LCAT tertile, and this effect was contrasted by pre-incubation with recombinant human LCAT (rhLCAT). The present study shows that reduced plasma LCAT concentration predicts CKD progression over time in patients with renal dysfunction, and, even more striking, it predicts the impairment of kidney function in the general population.

9.
Arterioscler Thromb Vasc Biol ; 39(5): 915-924, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30894011

RESUMO

Objective- Aim of this study was to evaluate changes in LCAT (lecithin:cholesterol acyltransferase) concentration and activity in patients with an acute coronary syndrome, to investigate if these changes are related to the compromised capacity of HDL (high-density lipoprotein) to promote endothelial nitric oxide (NO) production, and to assess if rhLCAT (recombinant human LCAT) can rescue the defective vasoprotective HDL function. Approach and Results- Thirty ST-segment-elevation myocardial infarction (STEMI) patients were enrolled, and plasma was collected at hospital admission, 48 and 72 hours thereafter, at hospital discharge, and at 30-day follow-up. Plasma LCAT concentration and activity were measured and related to the capacity of HDL to promote NO production in cultured endothelial cells. In vitro studies were performed in which STEMI patients' plasma was added with rhLCAT and HDL vasoprotective activity assessed by measuring NO production in endothelial cells. The plasma concentration of the LCAT enzyme significantly decreases during STEMI with a parallel significant reduction in LCAT activity. HDL isolated from STEMI patients progressively lose the capacity to promote NO production by endothelial cells, and the reduction is related to decreased LCAT concentration. In vitro incubation of STEMI patients' plasma with rhLCAT restores HDL ability to promote endothelial NO production, possibly related to significant modification in HDL phospholipid classes. Conclusions- Impairment of cholesterol esterification may be a major factor in the HDL dysfunction observed during acute coronary syndrome. rhLCAT is able to restore HDL-mediated NO production in vitro, suggesting LCAT as potential therapeutic target for restoring HDL functionality in acute coronary syndrome.


Assuntos
Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/fisiopatologia , Lipoproteínas HDL/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/enzimologia , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Masculino , Óxido Nítrico/metabolismo , Prognóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Sensibilidade e Especificidade , Esterol O-Aciltransferase/sangue
10.
Sci Rep ; 9(1): 20354, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889114

RESUMO

In the last years increasing attention has been given to the connection between genotype/phenotype and cardiovascular events in subjects with familial hypercholesterolemia (FH). MicroRNAs (miRs) bound to high-density lipoprotein (HDL) may contribute to better discriminate the cardiovascular risk of FH subjects. Our aim was to evaluate the HDL-miR panel in heterozygous FH (HeFH) patients with an LDLR null or defective mutation and its association with pulse wave velocity (PWV). We evaluated lipid panel, HDL-miR panel and PWV in 32 LDLR null mutation (LDLR-null group) and 35 LDLR defective variant (LDLR-defective group) HeFH patients. HDL-miR-486 and HDL-miR-92a levels were more expressed in the LDLR-null group than the LDLR-defective group. When we further stratified the study population into three groups according to both the LDLR genotype and history of ASCVD (LDLR-null/not-ASCVD, LDLR-defective/not-ASCVD and LDLR/ASCVD groups), both the LDLR/ASCVD and the LDLR-null/not-ASCVD groups had a higher expression of HDL-miR-486 and HDL-miR-92a than the LDLR-defective/not-ASCVD group. Finally, HDL-miR-486 and HDL-miR-92a were independently associated with PWV. In conclusion, the LDLR-null group exhibited HDL-miR-486 and HDL-miR-92a levels more expressed than the LDLR-defective group. Further studies are needed to evaluate these HDL-miRs as predictive biomarkers of cardiovascular events in FH.


Assuntos
Heterozigoto , Hiperlipoproteinemia Tipo II/genética , Lipoproteínas HDL/genética , MicroRNAs/genética , Mutação , Receptores de LDL/genética , Adulto , Biomarcadores , Feminino , Humanos , Hiperlipoproteinemia Tipo II/metabolismo , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade
11.
Nutrients ; 10(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326655

RESUMO

The development of nutraceutical ingredients has risen as a nutritional solution for health prevention. This study evaluated the effects of Oleactiv®, an ingredient developed for the prevention of atherogenesis, in hypercholesterolemic hamsters. Oleactiv® is a polyphenol-rich ingredient obtained from artichoke, olive and grape extracts as part of fruit and vegetables commonly consumed within the Mediterranean diet. A total of 21 Golden Syrian hamsters were divided into three groups. The standard group (STD) was fed a normolipidemic diet for 12 weeks, while the control group (CTRL) and Oleactiv® goup (OLE) were fed a high-fat diet. After sacrifice, the aortic fatty streak area (AFSA), plasmatic total cholesterol (TC), high-density lipoproteins (HDL-C), non-HDL-C and triglycerides (TG), were assessed. The cholesterol efflux capacity (CEC) of hamster plasma was quantified using a radiolabeled technique in murine macrophages J774. OLE administration induced a significant reduction of AFSA (-69%, p < 0.0001). Hamsters of the OLE group showed a significant decrease of both non-HDL-C (-173 mmol/L, p < 0.05) and TG (-154 mmol/L, p < 0.05). Interestingly, OLE induced a significant increase of total CEC (+17,33%, p < 0,05). Oleactiv® supplementation prevented atheroma development and had positive effects on the lipid profile of hypercholesterolemic hamsters. The increased CEC underlines the anti-atherosclerotic mechanism at the root of the atheroma reduction observed.


Assuntos
Anticolesterolemiantes/farmacologia , Aorta Torácica/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Colesterol/sangue , Suplementos Nutricionais , Hipercolesterolemia/tratamento farmacológico , Polifenóis/farmacologia , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Doenças da Aorta/sangue , Doenças da Aorta/etiologia , Aterosclerose/sangue , Aterosclerose/etiologia , Aterosclerose/patologia , Linhagem Celular , HDL-Colesterol/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Hipercolesterolemia/sangue , Hipercolesterolemia/etiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Mesocricetus , Camundongos , Placa Aterosclerótica , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...