Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(11): 2419-2441, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38420837

RESUMO

With the rapid development of studies involving droplet microfluidics, drug delivery, cell detection, and microparticle synthesis, among others, many scientists have invested significant efforts to model the flow of these fluid-filled bodies. Motivated by the intricate coupling between hydrodynamics and the interactions of fluid-filled bodies, several methods have been developed. The objective of this review is to present a compact foundation of the methods used in the literature in the context of lattice Boltzmann methods. For hydrodynamics, we focus on the lattice Boltzmann method due to its specific ability to treat time- and spatial-dependent boundary conditions and to incorporate new physical models in a computationally efficient way. We split the existing methods into two groups with regard to the interfacial boundary: fluid-structure and fluid-fluid methods. The fluid-structure methods are characterised by the coupling between fluid dynamics and mechanics of the flowing body, often used in applications involving membranes and similar flexible solid boundaries. We further divide fluid-structure-based methods into two subcategories, those which treat the fluid-structure boundary as a continuum medium and those that treat it as a discrete collection of individual springs and particles. Next, we discuss the fluid-fluid methods, particularly useful for the simulations of fluid-fluid interfaces. We focus on models for immiscible droplets and their interaction in a suspending fluid and describe benchmark tests to validate the models for fluid-filled bodies.

2.
Phys Rev E ; 108(4-2): 045304, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978617

RESUMO

We revisit force evaluation methodologies on rigid solid particles suspended in a viscous fluid that is simulated via the lattice Boltzmann method (LBM). We point out the noncommutativity of streaming and collision operators in the force evaluation procedure due to the presence of a solid boundary, and provide a theoretical explanation for this observation. Based on this analysis, we propose a discrete force calculation scheme with enhanced accuracy. The proposed scheme is essentially a discrete version of the Reynolds transport theorem (RTT) in the context of a lattice Boltzmann formulation. Besides maintaining satisfactory levels of reliability and accuracy, the method also handles force evaluation on complex geometries in a simple and transparent way. We run benchmark simulations for flow past cylinder and NACA0012 airfoil (for Reynolds numbers ranging from 10^{2} to 0.5×10^{6}) and show that the current approach significantly reduces the grid size requirement for accurate force evaluation.

3.
Soft Matter ; 19(34): 6556-6568, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37599649

RESUMO

We numerically study the dynamics of a passive fluid droplet confined within a microchannel whose walls are covered with a thin layer of active gel. The latter represents a fluid of extensile material modelling, for example, a suspension of cytoskeletal filaments and molecular motors. Our results show that the layer is capable of producing a spontaneous flow triggering a rectilinear motion of the passive droplet. For a hybrid design (a single wall covered by the active layer), at the steady state the droplet attains an elliptical shape, resulting from an asymmetric saw-toothed structure of the velocity field. In contrast, if the active gel covers both walls, the velocity field exhibits a fully symmetric pattern considerably mitigating morphological deformations. We further show that the structure of the spontaneous flow in the microchannel can be controlled by the anchoring conditions of the active gel at the wall. These findings are also confirmed by selected 3D simulations. Our results may stimulate further research addressed to design novel microfludic devices whose functioning relies on the collective properties of active gels.

4.
Eur Phys J E Soft Matter ; 46(5): 32, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154834

RESUMO

Tracking droplets in microfluidics is a challenging task. The difficulty arises in choosing a tool to analyze general microfluidic videos to infer physical quantities. The state-of-the-art object detector algorithm You Only Look Once (YOLO) and the object tracking algorithm Simple Online and Realtime Tracking with a Deep Association Metric (DeepSORT) are customizable for droplet identification and tracking. The customization includes training YOLO and DeepSORT networks to identify and track the objects of interest. We trained several YOLOv5 and YOLOv7 models and the DeepSORT network for droplet identification and tracking from microfluidic experimental videos. We compare the performance of the droplet tracking applications with YOLOv5 and YOLOv7 in terms of training time and time to analyze a given video across various hardware configurations. Despite the latest YOLOv7 being 10% faster, the real-time tracking is only achieved by lighter YOLO models on RTX 3070 Ti GPU machine due to additional significant droplet tracking costs arising from the DeepSORT algorithm. This work is a benchmark study for the YOLOv5 and YOLOv7 networks with DeepSORT in terms of the training time and inference time for a custom dataset of microfluidic droplets.

5.
J Chem Phys ; 158(10): 104101, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36922125

RESUMO

A regularized version of the lattice Boltzmann method for efficient simulation of soft materials is introduced. Unlike standard approaches, this method reconstructs the distribution functions from available hydrodynamic variables (density, momentum, and pressure tensor) without storing the full set of discrete populations. This scheme shows significantly lower memory requirements and data access costs. A series of benchmark tests of relevance to soft matter, such as collisions of fluid droplets, is discussed to validate the method. The results can be of particular interest for high-performance simulations of soft matter systems on future exascale computers.

6.
Polymers (Basel) ; 14(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365522

RESUMO

The radical polymerization process of acrylate compounds is, nowadays, numerically investigated using classical force fields and reactive molecular dynamics, with the aim to probe the gel-point transition as a function of the initial radical concentration. In the present paper, the gel-point transition of the 1,6-hexanediol dimethacrylate (HDDMA) is investigated by a coarser force field which grants a reduction in the computational costs, thereby allowing the simulation of larger system sizes and smaller radical concentrations. Hence, the polymerization is investigated using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). The network structures in the polymerization process are probed by cluster analysis tools, and the results are critically compared with the similar all-atom system, showing a good agreement.

7.
Phys Rev E ; 106(2-1): 024109, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109914

RESUMO

Engineering long-range interactions in experimental platforms has been achieved with great success in a large variety of quantum systems in recent years. Inspired by this progress, we propose a generalization of the classical Hamiltonian mean-field model to fermionic particles. We study the phase diagram and thermodynamic properties of the model in the canonical ensemble for ferromagnetic interactions as a function of temperature and hopping. At zero temperature, small charge fluctuations drive the many-body system through a first-order quantum phase transition from an ordered to a disordered phase. At higher temperatures, the fluctuation-induced phase transition remains first order initially and switches to second-order only at a tricritical point. Our results offer an intriguing example of tricriticality in a quantum system with long-range couplings, which bears direct experimental relevance. The analysis is performed by exact diagonalization and mean-field theory.

8.
Phys Rev Lett ; 128(12): 128001, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394304

RESUMO

We report new dynamical modes in confined soft granular flows, such as stochastic jetting and dripping, with no counterpart in continuum viscous fluids. The new modes emerge as a result of the propagation of the chaotic behavior of individual grains-here, monodisperse emulsion droplets-to the level of the entire system as the emulsion is focused into a narrow orifice by an external viscous flow. We observe avalanching dynamics and the formation of remarkably stable jets-single-file granular chains-which occasionally break, resulting in a non-Gaussian distribution of cluster sizes. We find that the sequences of droplet rearrangements that lead to the formation of such chains resemble unfolding of cancer cell clusters in narrow capillaries, overall demonstrating that microfluidic emulsion systems could serve to model various aspects of soft granular flows, including also tissue dynamics at the mesoscale.


Assuntos
Microfluídica , Emulsões , Viscosidade
10.
Macromolecules ; 55(5): 1474-1486, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35287293

RESUMO

Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). Different concentrations of radicals and reaction velocities are considered. The mechanical properties of the polymer resulting from 1,6-hexanediol dimethacrylate systems are characterized in terms of viscosity, diffusion constant, and activation energy, whereas the topological ones through the number of cycles (polymer loops) and cyclomatic complexity. Effects like volume shrinkage and delaying of the gel point for increasing monomer concentration are also predicted, as well as the stress-strain curve and Young's modulus. Combining ab initio, reactive molecular dynamics, and the D-NEMD method might lead to a novel and powerful tool to describe photopolymerization processes and to original routes to optimize additive manufacturing methods relying on photosensitive macromolecular systems.

11.
Cyberpsychol Behav Soc Netw ; 25(3): 169-173, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35294295

RESUMO

Big data (BD) is the hue and cry of modern science and society. The impact of such data deluge is huge and far reaching for both science and society. Moreover, given the effort required for collecting and analyzing these data, artificial intelligence (AI) has replaced the human mind in accomplishing the enormous task of deriving insight out of the information. In this article, we analyze the role of BD and AI in steering the world population toward the state of Zero Sales Resistance (ZSR): the inability to exert critical judgment over the most seductive aspects of the aforementioned data deluge. Moreover, we discuss the alarming consequences of presenting the merging of BD and AI as a universal panacea even if, to date, they have proven far more efficient for predicting human decisions and behaviors (predictive analytics) than for solving the most critical problems in science and society. Why? Our answer is simple. The causal structures associated with such challenges command a detailed understanding of the underlying mechanisms (causal explanation), typically acting nonlinearly and on a broad range of scales in space and time. In contrast, personality and behavior can be predicted with no need of a microscopic theory and understanding of the brain-mind system (empirical prediction). This is a direct consequence of the fact that our mind, at least for the intuitive level, uses the same prediction techniques applied by AI (bayesian predictions based on our experience). However, prediction is not explanation, and without joining them it will be impossible to achieve a major advance in our understanding of complex systems.


Assuntos
Inteligência Artificial , Big Data , Teorema de Bayes , Humanos
12.
Soft Matter ; 18(10): 1991-1996, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080230

RESUMO

A suspension of nanoparticles with very low volume fraction is found to assemble into a macroscopic cellular phase that is composed of particle-rich walls and particle-free voids under the collective influence of AC and DC voltages. Systematic study of this phase transition shows that it was the result of electrophoretic assembly into a two-dimensional configuration followed by spinodal decomposition into particle-rich walls and particle-poor cells mediated principally by electrohydrodynamic flow. This mechanistic understanding reveals two characteristics needed for a cellular phase to form, namely (1) a system that is considered two dimensional and (2) short-range attractive, long-range repulsive interparticle interactions. In addition to determining the mechanism underpinning the formation of the cellular phase, this work presents a method to reversibly assemble microscale continuous structures out of nanoscale particles in a manner that may enable the creation of materials that impact diverse fields including energy storage and filtration.


Assuntos
Eletricidade , Nanopartículas , Eletroforese , Transição de Fase , Suspensões
13.
J Chem Theory Comput ; 18(3): 1905-1914, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34881571

RESUMO

The ribosome stalling mechanism is a crucial biological process, yet its atomistic underpinning is still elusive. In this framework, the human XBP1u translational arrest peptide (AP) plays a central role in regulating the unfolded protein response (UPR) in eukaryotic cells. Here, we report multimicrosecond all-atom molecular dynamics simulations designed to probe the interactions between the XBP1u AP and the mammalian ribosome exit tunnel, both for the wild type AP and for four mutant variants of different arrest potencies. Enhanced sampling simulations allow investigating the AP release process of the different variants, shedding light on this complex mechanism. The present outcomes are in qualitative/quantitative agreement with available experimental data. In conclusion, we provide an unprecedented atomistic picture of this biological process and clear-cut insights into the key AP-ribosome interactions.


Assuntos
Peptídeos , Ribossomos , Animais , Citosol , Humanos , Mamíferos , Simulação de Dinâmica Molecular , Peptídeos/química , Ribossomos/química
14.
Interface Focus ; 11(6): 20210018, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34956592

RESUMO

The race to meet the challenges of the global pandemic has served as a reminder that the existing drug discovery process is expensive, inefficient and slow. There is a major bottleneck screening the vast number of potential small molecules to shortlist lead compounds for antiviral drug development. New opportunities to accelerate drug discovery lie at the interface between machine learning methods, in this case, developed for linear accelerators, and physics-based methods. The two in silico methods, each have their own advantages and limitations which, interestingly, complement each other. Here, we present an innovative infrastructural development that combines both approaches to accelerate drug discovery. The scale of the potential resulting workflow is such that it is dependent on supercomputing to achieve extremely high throughput. We have demonstrated the viability of this workflow for the study of inhibitors for four COVID-19 target proteins and our ability to perform the required large-scale calculations to identify lead antiviral compounds through repurposing on a variety of supercomputers.

16.
Philos Trans A Math Phys Eng Sci ; 379(2208): 20200400, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34455844

RESUMO

We present a deep learning-based object detection and object tracking algorithm to study droplet motion in dense microfluidic emulsions. The deep learning procedure is shown to correctly predict the droplets' shape and track their motion at competitive rates as compared to standard clustering algorithms, even in the presence of significant deformations. The deep learning technique and tool developed in this work could be used for the general study of the dynamics of biological agents in fluid systems, such as moving cells and self-propelled microorganisms in complex biological flows. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.

17.
Eur Phys J Plus ; 136(8): 864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458055

RESUMO

The state-of-the-art deep learning-based object recognition YOLO algorithm and object tracking DeepSORT algorithm are combined to analyze digital images from fluid dynamic simulations of multi-core emulsions and soft flowing crystals and to track moving droplets within these complex flows. The YOLO network was trained to recognize the droplets with synthetically prepared data, thereby bypassing the labor-intensive data acquisition process. In both applications, the trained YOLO + DeepSORT procedure performs with high accuracy on the real data from the fluid simulations, with low error levels in the inferred trajectories of the droplets and independently computed ground truth. Moreover, using commonly used desktop GPUs, the developed application is capable of analyzing data at speeds that exceed the typical image acquisition rates of digital cameras (30 fps), opening the interesting prospect of realizing a low-cost and practical tool to study systems with many moving objects, mostly but not exclusively, biological ones. Besides its practical applications, the procedure presented here marks the first step towards the automatic extraction of effective equations of motion of many-body soft flowing systems.

18.
Nature ; 595(7868): 537-541, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290424

RESUMO

Since its discovery1,2, the deep-sea glass sponge Euplectella aspergillum has attracted interest in its mechanical properties and beauty. Its skeletal system is composed of amorphous hydrated silica and is arranged in a highly regular and hierarchical cylindrical lattice that begets exceptional flexibility and resilience to damage3-6. Structural analyses dominate the literature, but hydrodynamic fields that surround and penetrate the sponge have remained largely unexplored. Here we address an unanswered question: whether, besides improving its mechanical properties, the skeletal motifs of E. aspergillum underlie the optimization of the flow physics within and beyond its body cavity. We use extreme flow simulations based on the 'lattice Boltzmann' method7, featuring over fifty billion grid points and spanning four spatial decades. These in silico experiments reproduce the hydrodynamic conditions on the deep-sea floor where E. aspergillum lives8-10. Our results indicate that the skeletal motifs reduce the overall hydrodynamic stress and support coherent internal recirculation patterns at low flow velocity. These patterns are arguably beneficial to the organism for selective filter feeding and sexual reproduction11,12. The present study reveals mechanisms of extraordinary adaptation to live in the abyss, paving the way towards further studies of this type at the intersection between fluid mechanics, organism biology and functional ecology.


Assuntos
Poríferos/anatomia & histologia , Poríferos/fisiologia , Água do Mar/análise , Animais , Comportamento Alimentar , Hidrodinâmica , Reprodução , Reologia
19.
Langmuir ; 37(30): 9026-9033, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34291636

RESUMO

We numerically study the translocation dynamics of double emulsion drops with multiple close-packed inner droplets within constrictions. Such liquid architectures, which we refer to as HIPdEs (high-internal phase double emulsions), consist of a ternary fluid, in which monodisperse droplets are encapsulated within a larger drop in turn immersed in a bulk fluid. Extensive two-dimensional lattice Boltzmann simulations show that if the area fraction of the internal drops is close to the packing fraction limit of hard spheres and the height of the channel is much smaller than the typical size of the emulsion, the crossing yields permanent shape deformations persistent over long periods of time. Morphological changes and rheological response are quantitatively assessed in terms of the structure of the velocity field, circularity of the emulsion, and rate of energy dissipated by viscous forces. Our results may be used to improve the design of soft mesoscale porous materials, which employ HIPdEs as templates for tissue engineering applications.


Assuntos
Engenharia Tecidual , Emulsões , Porosidade , Reologia , Viscosidade
20.
Soft Matter ; 17(13): 3709-3721, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33690767

RESUMO

We present mesoscale numerical simulations of Rayleigh-Bénard (RB) convection in a two-dimensional model emulsion. The systems under study are constituted of finite-size droplets, whose concentration Φ0 is systematically varied from small (Newtonian emulsions) to large values (non-Newtonian emulsions). We focus on the characterisation of the heat transfer properties close to the transition from conductive to convective states, where it is well known that a homogeneous Newtonian system exhibits a steady flow and a time-independent heat flux. In marked contrast, emulsions exhibit non-steady dynamics with fluctuations in the heat flux. In this paper, we aim at the characterisation of such non-steady dynamics via detailed studies on the time-averaged heat flux and its fluctuations. To quantitatively understand the time-averaged heat flux, we propose a side-by-side comparison between the emulsion system and a single-phase (SP) system, whose viscosity is suitably constructed from the shear rheology of the emulsion. We show that such local closure works well only when a suitable degree of coarse-graining (at the droplet scale) is introduced in the local viscosity. To delve deeper into the fluctuations in the heat flux, we furthermore propose a side-by-side comparison between a Newtonian emulsion (i.e., with a small droplet concentration) and a non-Newtonian emulsion (i.e., with a large droplet concentration), at fixed time-averaged heat flux. This comparison elucidates that finite-size droplets and the non-Newtonian rheology cooperate to trigger enhanced heat-flux fluctuations at the droplet scales. These enhanced fluctuations are rooted in the emergence of space correlations among distant droplets, which we highlight via direct measurements of the droplets displacement and the characterisation of the associated correlation function. The observed findings offer insights on heat transfer properties for confined systems possessing finite-size constituents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...