Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22268891

RESUMO

AO_SCPLOWBSTRACTC_SCPLOWO_ST_ABSIntroductionC_ST_ABSOver the past two decades, vaccination programmes for vaccine-preventable diseases (VPDs) have expanded across low- and middle-income countries (LMICs). However, the rise of COVID-19 resulted in global disruption to routine immunisation (RI) activities. Such disruptions could have a detrimental effect on public health, leading to more deaths from VPDs, particularly without mitigation efforts. Hence, as RIs resume, it is important to estimate the effectiveness of different approaches for recovery. MethodsWe apply an impact extrapolation method developed by the Vaccine Impact Modelling Consortium to estimate the impact of COVID-19-related disruptions with different recovery scenarios for ten VPDs across 112 LMICs. We focus on deaths averted due to RIs occurring in the years 2020-2030 and investigate two recovery scenarios relative to a no-COVID-19 scenario. In the recovery scenarios, we assume a 10% COVID-19-related drop in RI coverage in the year 2020. We then linearly interpolate coverage to the year 2030 to investigate two routes to recovery, whereby the immunization agenda (IA2030) targets are reached by 2030 or fall short by 10%. ResultsWe estimate that falling short of the IA2030 targets by 10% leads to 11.26% fewer fully vaccinated persons (FVPs) and 11.34% more deaths over the years 2020-2030 relative to the no-COVID-19 scenario, whereas, reaching the IA2030 targets reduces these proportions to 5% fewer FVPs and 5.22% more deaths. The impact of the disruption varies across the VPDs with diseases where coverage expands drastically in future years facing a smaller detrimental effect. ConclusionOverall, our results show that drops in RI coverage could result in more deaths due to VPDs. As the impact of COVID-19-related disruptions is dependent on the vaccination coverage that is achieved over the coming years, the continued efforts of building up coverage and addressing gaps in immunity are vital in the road to recovery. SUMMARYO_ST_ABSWhat is already known?C_ST_ABSO_LIThe impact of vaccination programmes without COVID-19-related disruption has been assessed by the Vaccine Impact Modelling Consortium. C_LIO_LIThe COVID-19 pandemic has disrupted vaccination programmes resulting in a decline in coverage in the year 2020, the ramifications of this is unclear. C_LI What are the new findings?O_LIWe estimate the impact of disruptions to routine immunisation coverage and different routes to recovery. We compare to a scenario without COVID-19-related disruptions (assuming no drops in immunisation coverage). C_LIO_LIWe estimate that reaching the Immunization Agenda (IA2030) targets leads to 5% fewer FVPs and 5.22% more deaths over the years 2020 to 2030 relative to the scenario with no COVID-19-related disruptions, whereas falling short of the IA2030 targets by 10% leads to 11.26% fewer fully vaccinated persons (FVPs) and 11.34% more deaths. C_LIO_LIThe impact of the disruption varies across the vaccine-preventable diseases with those forecasted to have vast expansions in coverage post-2020 able to recover more. C_LI What do the new findings imply?O_LIA drop in vaccination coverage results in fewer vaccinated individuals and thus more deaths due to vaccine-preventable diseases. To mitigate this, building up coverage of routine immunisations and addressing immunity gaps with activities such as catch-up campaigns are vital in the road to recovery. C_LI

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250489

RESUMO

BackgroundChildhood immunisation services have been disrupted by COVID-19. WHO recommends considering outbreak risk using epidemiological criteria when deciding whether to conduct preventive vaccination campaigns during the pandemic. MethodsWe used 2-3 models per infection to estimate the health impact of 50% reduced routine vaccination coverage and delaying campaign vaccination for measles, meningococcal A and yellow fever vaccination in 3-6 high burden countries per infection. ResultsReduced routine coverage in 2020 without catch-up vaccination may increase measles and yellow fever disease burden in the modelled countries. Delaying planned campaigns may lead to measles outbreaks and increases in yellow fever burden in some countries. For meningococcal A vaccination, short term disruptions in 2020 are unlikely to have a significant impact. ConclusionThe impact of COVID-19-related disruption to vaccination programs varies between infections and countries. FundingBill & Melinda Gates Foundation and Gavi, the Vaccine Alliance Impact statementRoutine and campaign vaccination disruption in 2020 may lead to measles outbreaks and yellow fever burden increases in some countries, but is unlikely to greatly increase meningococcal A burden. SummaryO_ST_ABSBackgroundC_ST_ABSChildhood immunisation services have been disrupted by the COVID-19 pandemic. WHO recommends considering outbreak risk using epidemiological criteria when deciding whether to conduct preventive vaccination campaigns during the pandemic. MethodsWe used 2-3 models per infection to estimate the health impact of 50% reduced routine vaccination coverage in 2020 and delay of campaign vaccination from 2020 to 2021 for measles vaccination in Bangladesh, Chad, Ethiopia, Kenya, Nigeria, and South Sudan, for meningococcal A vaccination in Burkina Faso, Chad, Niger, and Nigeria, and for yellow fever vaccination in the Democratic Republic of Congo, Ghana, and Nigeria. Our counterfactual comparative scenario was sustaining immunisation services at coverage projections made prior to COVID-19 (i.e. without any disruption). FindingsReduced routine vaccination coverage in 2020 without catch-up vaccination may lead to an increase in measles and yellow fever disease burden in the modelled countries. Delaying planned campaigns in Ethiopia and Nigeria by a year may significantly increase the risk of measles outbreaks (both countries did complete their supplementary immunisation activities (SIAs) planned for 2020). For yellow fever vaccination, delay in campaigns leads to a potential disease burden rise of >1 death per 100,000 people per year until the campaigns are implemented. For meningococcal A vaccination, short term disruptions in 2020 are unlikely to have a significant impact due to the persistence of direct and indirect benefits from past introductory campaigns of the 1 to 29-year-old population, bolstered by inclusion of the vaccine into the routine immunisation schedule accompanied by further catch-up campaigns. InterpretationThe impact of COVID-19-related disruption to vaccination programs varies between infections and countries. Planning and implementation of campaigns should consider country and infection-specific epidemiological factors and local immunity gaps worsened by the COVID-19 pandemic when prioritising vaccines and strategies for catch-up vaccination. FundingBill & Melinda Gates Foundation and Gavi, the Vaccine Alliance

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20135715

RESUMO

Coronavirus disease 2019 (COVID-19) was first diagnosed in Colombia from a traveler arriving from Italy on February 26, 2020. To date, available data on the origins and number or introductions of SARS-CoV-2 into the country are limited. Here, we sequenced SARS-CoV-2 from 43 clinical samples and--together with other 73 genomes sequences available from the country--we investigated the emergence and the routes of importation of COVID-19 into Colombia using epidemiological, historical air travel and phylogenetic observations. Our study provided evidence of multiple introductions, mostly from Europe, with at least 12 lineages being documented. Phylogenetic findings validated the lineage diversity, supported multiple importation events and the evolutionary relationship of epidemiologically-linked transmission chains. Our results reconstruct the early evolutionary history of SARS-CoV-2 in Colombia and highlight the advantages of genome sequencing to complement COVID-19 outbreak investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...