Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biophys J ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702884

RESUMO

The mechanism by which genetic information was copied prior to the evolution of ribozymes is of great interest because of its importance to the origin of life. The most effective known process for the nonenzymatic copying of an RNA template is primer extension by a two-step pathway in which 2-aminoimidazole-activated nucleotides first react with each other to form an imidazolium-bridged intermediate that subsequently reacts with the primer. Reaction kinetics, structure-activity relationships, and X-ray crystallography have provided insight into the overall reaction mechanism, but many puzzles remain. In particular, high concentrations of Mg2+ are required for efficient primer extension, but the mechanism by which Mg2+ accelerates primer extension remains unknown. By analogy with the mechanism of DNA and RNA polymerases, a role for Mg2+ in facilitating the deprotonation of the primer 3'-hydroxyl is often assumed, but no catalytic metal ion is seen in crystal structures of the primer-extension complex. To explore the potential effects of Mg2+ binding in the reaction center, we performed atomistic molecular dynamics simulations of a series of modeled complexes in which a Mg2+ ion was placed in the reaction center with inner-sphere coordination with different sets of functional groups. Our simulations suggest that coordination of a Mg2+ ion with both O3' of the terminal primer nucleotide and the pro-Sp nonbridging oxygen of the reactive phosphate of an imidazolium-bridged dinucleotide would help to pre-organize the structure of the primer/template substrate complex to favor the primer-extension reaction. Our results suggest that the catalytic metal ion may play an important role in overcoming electrostatic repulsion between a deprotonated O3' and the reactive phosphate of the bridged dinucleotide and lead to testable predictions of the mode of Mg2+ binding that is most relevant to catalysis of primer extension.

2.
Nucleic Acids Res ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726871

RESUMO

The emergence of RNA on the early Earth is likely to have been influenced by chemical and physical processes that acted to filter out various alternative nucleic acids. For example, UV photostability is thought to have favored the survival of the canonical nucleotides. In a recent proposal for the prebiotic synthesis of the building blocks of RNA, ribonucleotides share a common pathway with arabino- and threo-nucleotides. We have therefore investigated non-templated primer extension with 2-aminoimidazole-activated forms of these alternative nucleotides to see if the synthesis of the first oligonucleotides might have been biased in favor of RNA. We show that non-templated primer extension occurs predominantly through 5'-5' imidazolium-bridged dinucleotides, echoing the mechanism of template-directed primer extension. Ribo- and arabino-nucleotides exhibited comparable rates and yields of non-templated primer extension, whereas threo-nucleotides showed lower reactivity. Competition experiments confirmed the bias against the incorporation of threo-nucleotides. The incorporation of an arabino-nucleotide at the end of the primer acts as a chain terminator and blocks subsequent extension. These biases, coupled with potentially selective prebiotic synthesis, and the templated copying that is known to favour the incorporation of ribonucleotides, provide a plausible model for the effective exclusion of arabino- and threo-nucleotides from primordial oligonucleotides.

3.
J Am Chem Soc ; 146(15): 10632-10639, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579124

RESUMO

Nonenzymatic template-directed RNA copying requires catalysis by divalent metal ions. The primer extension reaction involves the attack of the primer 3'-hydroxyl on the adjacent phosphate of a 5'-5'-imidazolium-bridged dinucleotide substrate. However, the nature of the interaction of the catalytic metal ion with the reaction center remains unclear. To explore the coordination of the catalytic metal ion with the imidazolium-bridged dinucleotide substrate, we examined catalysis by oxophilic and thiophilic metal ions with both diastereomers of phosphorothioate-modified substrates. We show that Mg2+ and Cd2+ exhibit opposite preferences for the two phosphorothioate substrate diastereomers, indicating a stereospecific interaction of the divalent cation with one of the nonbridging phosphorus substituents. High-resolution X-ray crystal structures of the products of primer extension with phosphorothioate substrates reveal the absolute stereochemistry of this interaction and indicate that catalysis by Mg2+ involves inner-sphere coordination with the nonbridging phosphate oxygen in the pro-SP position, while thiophilic cadmium ions interact with sulfur in the same position, as in one of the two phosphorothioate substrates. These results collectively suggest that during nonenzymatic RNA primer extension with a 5'-5'-imidazolium-bridged dinucleotide substrate the interaction of the catalytic Mg2+ ion with the pro-SP oxygen of the reactive phosphate plays a crucial role in the metal-catalyzed SN2(P) reaction.


Assuntos
RNA Catalítico , RNA , RNA/química , Metais , Fosfatos de Dinucleosídeos , Fosfatos , Catálise , Oxigênio , Íons , RNA Catalítico/química
4.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464152

RESUMO

Coded ribosomal peptide synthesis could not have evolved unless its sequence and amino acid specific aminoacylated tRNA substrates already existed. We therefore wondered whether aminoacylated RNAs might have served some primordial function prior to their role in protein synthesis. Here we show that specific RNA sequences can be nonenzymatically aminoacylated and ligated to produce amino acid-bridged stem-loop RNAs. We used deep sequencing to identify RNAs that undergo highly efficient glycine aminoacylation followed by loop-closing ligation. The crystal structure of one such glycine-bridged RNA hairpin reveals a compact internally stabilized structure with the same eponymous T-loop architecture found in modern tRNA. We demonstrate that the T-loop assisted amino acid bridging of RNA oligonucleotides enables the rapid template-free assembly of a chimeric version of an aminoacyl-RNA synthetase ribozyme. We suggest that the primordial assembly of such chimeric ribozymes would have allowed the greater functionality of amino acids to contribute to enhanced ribozyme catalysis, providing a driving force for the evolution of sequence and amino acid specific aminoacyl-RNA synthetase enzymes prior to their role in protein synthesis.

5.
PNAS Nexus ; 3(3): pgae084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505692

RESUMO

The origin of life likely occurred within environments that concentrated cellular precursors and enabled their co-assembly into cells. Soda lakes (those dominated by Na+ ions and carbonate species) can concentrate precursors of RNA and membranes, such as phosphate, cyanide, and fatty acids. Subsequent assembly of RNA and membranes into cells is a long-standing problem because RNA function requires divalent cations, e.g. Mg2+, but Mg2+ disrupts fatty acid membranes. The low solubility of Mg-containing carbonates limits soda lakes to moderate Mg2+ concentrations (∼1 mM), so we investigated whether both RNAs and membranes function within these lakes. We collected water from Last Chance Lake and Goodenough Lake in Canada. Because we sampled after seasonal evaporation, the lake water contained ∼1 M Na+ and ∼1 mM Mg2+ near pH 10. In the laboratory, nonenzymatic, RNA-templated polymerization of 2-aminoimidazole-activated ribonucleotides occurred at comparable rates in lake water and standard laboratory conditions (50 mM MgCl2, pH 8). Additionally, we found that a ligase ribozyme that uses oligonucleotide substrates activated with 2-aminoimidazole was active in lake water after adjusting pH from ∼10 to 9. We also observed that decanoic acid and decanol assembled into vesicles in a dilute solution that resembled lake water after seasonal rains, and that those vesicles retained encapsulated solutes despite salt-induced flocculation when the external solution was replaced with dry-season lake water. By identifying compatible conditions for nonenzymatic and ribozyme-catalyzed RNA assembly, and for encapsulation by membranes, our results suggest that soda lakes could have enabled cellular life to emerge on Earth, and perhaps elsewhere.

6.
Chem Sci ; 15(6): 2158-2166, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332835

RESUMO

Charge separation is one of the most common consequences of the absorption of UV light by DNA. Recently, it has been shown that this process can enable efficient self-repair of cyclobutane pyrimidine dimers (CPDs) in specific short DNA oligomers such as the GAT[double bond, length as m-dash]T sequence. The mechanism was characterized as sequential electron transfer through the nucleobase stack which is controlled by the redox potentials of nucleobases and their sequence. Here, we demonstrate that the inverse sequence T[double bond, length as m-dash]TAG promotes self-repair with higher quantum yields (0.58 ± 0.23%) than GAT[double bond, length as m-dash]T (0.44 ± 0.18%) in a comparative study involving UV-irradiation experiments. After extended exposure to UV irradiation, a photostationary equilibrium between self-repair and damage formation is reached at 33 ± 13% for GAT[double bond, length as m-dash]T and at 40 ± 16% for T[double bond, length as m-dash]TAG, which corresponds to the maximum total yield of self-repair. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) simulations allowed us to assign this disparity to better stacking overlap between the G and A bases, which lowers the energies of the key A-˙G+˙ charge transfer state in the dominant conformers of the T[double bond, length as m-dash]TAG tetramer. These conformational differences also hinder alternative photorelaxation pathways of the T[double bond, length as m-dash]TAG tetranucleotide, which otherwise compete with the sequential electron transfer mechanism responsible for CPD self-repair. Overall, we demonstrate that photoinduced electron transfer is strongly dependent on conformation and the availability of alternative photodeactivation mechanisms. This knowledge can be used in the identification and prediction of canonical and modified DNA sequences exhibiting efficient electron transfer. It also further contributes to our understanding of DNA self-repair and its potential role in the photochemical selection of the most photostable sequences on the early Earth.

7.
Nucleic Acids Res ; 52(5): 2174-2187, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38348869

RESUMO

Oligonucleotide hybridization is crucial in various biological, prebiotic and nanotechnological processes, including gene regulation, non-enzymatic primer extension and DNA nanodevice assembly. Although extensive research has focused on the thermodynamics and kinetics of nucleic acid hybridization, the behavior of complex mixtures and the outcome of competition for target binding remain less well understood. In this study, we investigate the impact of mismatches and bulges in a 12 bp DNA or RNA duplex on its association (kon) and dissociation (koff) kinetics. We find that such defects have relatively small effects on the association kinetics, while the dissociation kinetics vary in a position-dependent manner by up to 6 orders of magnitude. Building upon this observation, we explored a competition scenario involving multiple oligonucleotides, and observed a transient low specificity of probe hybridization to fully versus partially complementary targets in solution. We characterize these long-lived metastable states and their evolution toward equilibrium, and show that sufficiently long-lived mis-paired duplexes can serve as substrates for prebiotically relevant chemical copying reactions. Our results suggest that transient low accuracy states may spontaneously emerge within all complex nucleic acid systems comprising a large enough number of competing strands, with potential repercussions for gene regulation in the realm of modern biology and the prebiotic preservation of genetic information.


Assuntos
Hibridização de Ácido Nucleico , Oligonucleotídeos , DNA/química , Cinética , Oligonucleotídeos/genética , Oligonucleotídeos/química , RNA/química , Termodinâmica
8.
J Am Chem Soc ; 146(6): 3861-3871, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293747

RESUMO

2-Thiouridine (s2U) is a nucleobase modification that confers enhanced efficiency and fidelity both on modern tRNA codon translation and on nonenzymatic and ribozyme-catalyzed RNA copying. We have discovered an unusual base pair between two 2-thiouridines that stabilizes an RNA duplex to a degree that is comparable to that of a native A:U base pair. High-resolution crystal structures indicate similar base-pairing geometry and stacking interactions in duplexes containing s2U:s2U compared to those with U:U pairs. Notably, the C═O···H-N hydrogen bond in the U:U pair is replaced with a C═S···H-N hydrogen bond in the s2U:s2U base pair. The thermodynamic stability of the s2U:s2U base pair suggested that this self-pairing might lead to an increased error frequency during nonenzymatic RNA copying. However, competition experiments show that s2U:s2U base-pairing induces only a low level of misincorporation during nonenzymatic RNA template copying because the correct A:s2U base pair outcompetes the slightly weaker s2U:s2U base pair. In addition, even if an s2U is incorrectly incorporated, the addition of the next base is greatly hindered. This strong stalling effect would further increase the effective fidelity of nonenzymatic RNA copying with s2U. Our findings suggest that s2U may enhance the rate and extent of nonenzymatic copying with only a minimal cost in fidelity.


Assuntos
RNA Catalítico , RNA , Tiouridina/análogos & derivados , RNA/química , Pareamento de Bases , Tiouridina/química , RNA Catalítico/química , Conformação de Ácido Nucleico
9.
ACS Nano ; 17(23): 23772-23783, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38038709

RESUMO

There is currently no plausible path for the emergence of a self-replicating protocell, because prevalent formulations of model protocells are built with fatty acid vesicles that cannot withstand the concentrations of Mg2+ needed for the function and replication of nucleic acids. Although prebiotic chelates increase the survivability of fatty acid vesicles, the resulting model protocells are incapable of growth and division. Here, we show that protocells made of mixtures of cyclophospholipids and fatty acids can grow and divide in the presence of Mg2+-citrate. Importantly, these protocells retain encapsulated nucleic acids during growth and division, can acquire nucleotides from their surroundings, and are compatible with the nonenzymatic extension of an RNA oligonucleotide, chemistry needed for the replication of a primitive genome. Our work shows that prebiotically plausible mixtures of lipids form protocells that are active under the conditions necessary for the emergence of Darwinian evolution.


Assuntos
Células Artificiais , Ácidos Nucleicos , RNA , Ácidos Graxos , Citratos
10.
Chem Commun (Camb) ; 59(91): 13603-13606, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37899697

RESUMO

Nucleic acids can be damaged by ultraviolet (UV) irradiation, forming structural photolesions such as cyclobutane-pyrimidine-dimers (CPD). In modern organisms, sophisticated enzymes repair CPD lesions in DNA, but to our knowledge, no RNA-specific enzymes exist for CPD repair. Here, we show for the first time that RNA can protect itself from photolesions by an intrinsic UV-induced self-repair mechanism. This mechanism, prior to this study, has exclusively been observed in DNA and is based on charge transfer from CPD-adjacent bases. In a comparative study, we determined the quantum yields of the self-repair of the CPD-containing RNA sequence, GAU = U to GAUU (0.23%), and DNA sequence, d(GAT = T) to d(GATT) (0.44%), upon 285 nm irradiation via UV/Vis spectroscopy and HPLC analysis. After several hours of irradiation, a maximum conversion yield of ∼16% for GAU = U and ∼33% for d(GAT = T) was reached. We examined the dynamics of the intermediate charge transfer (CT) state responsible for the self-repair with ultrafast UV pump - IR probe spectroscopy. In the dinucleotides GA and d(GA), we found comparable quantum yields of the CT state of ∼50% and lifetimes on the order of several hundred picoseconds. Charge transfer in RNA strands might lead to reactions currently not considered in RNA photochemistry and may help understanding RNA damage formation and repair in modern organisms and viruses. On the UV-rich surface of the early Earth, these self-stabilizing mechanisms likely affected the selection of the earliest nucleotide sequences from which the first organisms may have developed.


Assuntos
Reparo do DNA , Dímeros de Pirimidina , Dímeros de Pirimidina/química , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efeitos da radiação , RNA , DNA/química , Raios Ultravioleta , Dano ao DNA
11.
Science ; 382(6669): 423-429, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883544

RESUMO

A DNA polymerase with a single mutation and a divalent calcium cofactor catalyzes the synthesis of unnatural N3'→P5' phosphoramidate (NP) bonds to form NP-DNA. However, this template-directed phosphoryl transfer activity remains orders of magnitude slower than native phosphodiester synthesis. Here, we used time-resolved x-ray crystallography to show that NP-DNA synthesis proceeds with a single detectable calcium ion in the active site. Using insights from isotopic and elemental effects, we propose that one-metal-ion electrophilic substrate activation is inferior to the native two-metal-ion mechanism. We found that this deficiency in divalent activation could be ameliorated by trivalent rare earth and post-transition metal cations, substantially enhancing NP-DNA synthesis. Scandium(III), in particular, confers highly specific NP activity with kinetics enhanced by more than 100-fold over calcium(II), yielding NP-DNA strands up to 100 nucleotides in length.


Assuntos
Proteínas de Bactérias , Cálcio , Coenzimas , DNA Polimerase Dirigida por DNA , DNA , Geobacillus stearothermophilus , Cálcio/química , DNA/biossíntese , DNA Polimerase Dirigida por DNA/química , Nucleotídeos/química , Coenzimas/química , Geobacillus stearothermophilus/enzimologia , Proteínas de Bactérias/química , Ativação Enzimática , Cristalografia por Raios X , Conformação Proteica , Biocatálise
12.
ACS Cent Sci ; 9(8): 1670-1678, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37637737

RESUMO

Catalytic RNAs or ribozymes are considered to be central to primordial biology. Most ribozymes require moderate to high concentrations of divalent cations such as Mg2+ to fold into their catalytically competent structures and perform catalysis. However, undesirable effects of Mg2+ such as hydrolysis of reactive RNA building blocks and degradation of RNA structures are likely to undermine its beneficial roles in ribozyme catalysis. Further, prebiotic cell-like compartments bounded by fatty acid membranes are destabilized in the presence of Mg2+, making ribozyme function inside prebiotically relevant protocells a significant challenge. Therefore, we sought to identify conditions that would enable ribozymes to retain activity at low concentrations of Mg2+. Inspired by the ability of ribozymes to function inside crowded cellular environments with <1 mM free Mg2+, we tested molecular crowding as a potential mechanism to lower the Mg2+ concentration required for ribozyme-catalyzed RNA assembly. Here, we show that the ribozyme-catalyzed ligation of phosphorimidazolide RNA substrates is significantly enhanced in the presence of the artificial crowding agent polyethylene glycol. We also found that molecular crowding preserves ligase activity under denaturing conditions such as alkaline pH and the presence of urea. Additionally, we show that crowding-induced stimulation of RNA-catalyzed RNA assembly is not limited to phosphorimidazolide ligation but extends to the RNA-catalyzed polymerization of nucleoside triphosphates. RNA-catalyzed RNA ligation is also stimulated by the presence of prebiotically relevant small molecules such as ethylene glycol, ribose, and amino acids, consistent with a role for molecular crowding in primordial ribozyme function and more generally in the emergence of RNA-based cellular life.

13.
J Am Chem Soc ; 145(29): 16142-16149, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37431761

RESUMO

A key challenge in origin-of-life research is the identification of plausible conditions that facilitate multiple steps along the pathway from chemistry to biology. The incompatibility of nucleotide activation chemistry and nonenzymatic template-directed RNA copying has hindered attempts to define such a pathway. Here, we show that adding heteroaromatic small molecules to the reaction network facilitates in situ nucleotide phosphate activation under conditions compatible with RNA copying, allowing both reactions to take place in the same mixture. This is achieved using Passerini-type phosphate activation in concert with nucleophilic organocatalysts that intercept high-energy reactive intermediates; this sequence ultimately affords 5',5'-imidazolium-bridged dinucleotides─the active species in template-directed RNA polymerization. Our results suggest that mixtures of prebiotically relevant heteroaromatic small molecules could have played a key role in the transition from chemistry to biology.


Assuntos
Nucleotídeos , RNA , RNA/química , Nucleotídeos/química , Polimerização
14.
Biophys J ; 122(16): 3323-3339, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37469144

RESUMO

Hybridization of short nucleic acid segments (<4 nt) to single-strand templates occurs as a critical intermediate in processes such as nonenzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood because of the experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential noncanonical base-pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2-40 µs depending on the template and temperature. Dinucleotide hybridization and dehybridization involve a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.


Assuntos
DNA , Hibridização de Ácido Nucleico , RNA , Análise Espectral , DNA/química , RNA/química , Termodinâmica , Cinética , Análise Espectral/métodos , Simulação de Dinâmica Molecular
15.
Proc Natl Acad Sci U S A ; 120(24): e2221064120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276401

RESUMO

Semipermeable membranes are a key feature of all living organisms. While specialized membrane transporters in cells can import otherwise impermeable nutrients, the earliest cells would have lacked a mechanism to import nutrients rapidly under nutrient-rich circumstances. Using both experiments and simulations, we find that a process akin to passive endocytosis can be recreated in model primitive cells. Molecules that are too impermeable to be absorbed can be taken up in a matter of seconds in an endocytic vesicle. The internalized cargo can then be slowly released over hours, into the main lumen or putative cytoplasm. This work demonstrates a way by which primitive life could have broken the symmetry of passive permeation prior to the evolution of protein transporters.


Assuntos
Células Artificiais , Endocitose , Vesículas Transportadoras
16.
Nucleic Acids Res ; 51(13): 6528-6539, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37247941

RESUMO

The nonenzymatic copying of RNA is thought to have been necessary for the transition between prebiotic chemistry and ribozyme-catalyzed RNA replication in the RNA World. We have previously shown that a potentially prebiotic nucleotide activation pathway based on phospho-Passerini chemistry can lead to the efficient synthesis of 2-aminoimidazole activated mononucleotides when carried out under freeze-thaw cycling conditions. Such activated nucleotides react with each other to form 5'-5' 2-aminoimidazolium bridged dinucleotides, enabling template-directed primer extension to occur within the same reaction mixture. However, mononucleotides linked to oligonucleotides by a 5'-5' 2-aminoimidazolium bridge are superior substrates for nonenzymatic primer extension; their higher intrinsic reactivity and their higher template affinity enable faster template copying at lower substrate concentrations. Here we show that eutectic phase phospho-Passerini chemistry efficiently activates short oligonucleotides and promotes the formation of monomer-bridged-oligonucleotide species during freeze-thaw cycles. We then demonstrate that in-situ generated monomer-bridged-oligonucleotides lead to efficient nonenzymatic template copying in the same reaction mixture. Our demonstration that multiple steps in the pathway from activation chemistry to RNA copying can occur together in a single complex environment simplifies this aspect of the origin of life.


The absence of a prebiotically plausible pathway for the efficient nonenzymatic copying of RNAs remains a major obstacle towards constructing self-replicating protocells that emulate early lifeforms. We demonstrate the activation of short oligonucleotides and the subsequent formation of monomer-bridged-oligonucleotide species, leading to efficient nonenzymatic template copying in the same reaction mixture. Our findings suggest that in-situ activated mixtures of mono- and oligo-nucleotides would significantly outperform mononucleotides in driving the copying of arbitrary RNA sequences. Our demonstration that multiple steps in the pathway from activation chemistry to RNA copying can occur together in a single complex environment simplifies this aspect of the origin of life.


Assuntos
RNA Catalítico , RNA , RNA/genética , Oligonucleotídeos , RNA Catalítico/metabolismo , Nucleotídeos , Fosfatos de Dinucleosídeos
17.
Small Methods ; 7(12): e2300126, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37246261

RESUMO

Vesicle fusion is an important process underlying cell division, transport, and membrane trafficking. In phospholipid systems, a range of fusogens including divalent cations and depletants have been shown to induce adhesion, hemifusion, and then full content fusion between vesicles. This work shows that these fusogens do not perform the same function for fatty acid vesicles, which are used as model protocells (primitive cells). Even when fatty acid vesicles appear adhered or hemifused to each other, the intervening barriers between vesicles do not rupture. This difference is likely because fatty acids have a single aliphatic tail, and are more dynamic than their phospholipid counterparts. To address this, it is postulated that fusion could instead occur under conditions, such as lipid exchange, that disrupt lipid packing. Using both experiments and molecular dynamics simulations, it is verified that fusion in fatty acid systems can indeed be induced by lipid exchange. These results begin to probe how membrane biophysics could constrain the evolutionary dynamics of protocells.


Assuntos
Células Artificiais , Bicamadas Lipídicas , Fosfolipídeos/metabolismo , Ácidos Graxos , Cátions Bivalentes
18.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205531

RESUMO

Semipermeable membranes are a key feature of all living organisms. While specialized membrane transporters in cells can import otherwise impermeable nutrients, the earliest cells would have lacked a mechanism to import nutrients rapidly under nutrient-rich circumstances. Using both experiments and simulations, we find that a process akin to passive endocytosis can be recreated in model primitive cells. Molecules that are too impermeable to be absorbed can be taken up in a matter of seconds in an endocytic vesicle. The internalized cargo can then be slowly released over hours, into the main lumen or putative cytoplasm. This work demonstrates a way by which primitive life could have broken the symmetry of passive permeation prior to the evolution of protein transporters.

19.
Chemistry ; 29(43): e202301376, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216492

RESUMO

Demonstrating RNA catalysis within prebiotically relevant models of primordial cells (protocells) remains a challenge in origins of life research. Fatty acid vesicles encapsulating genomic and catalytic RNAs (ribozymes) are attractive models for protocells; however, RNA catalysis has largely been incompatible with fatty acid vesicles due to their instability in the presence of Mg2+ at the concentrations required for ribozyme function. Here, we report a ribozyme that catalyzes template-directed RNA ligation at low Mg2+ concentrations and thus remains active within stable vesicles. Ribose and adenine, both prebiotically relevant molecules, were found to greatly reduce Mg2+ -induced RNA leakage from vesicles. When we co-encapsulated the ribozyme, substrate, and template within fatty acid vesicles, we observed efficient RNA-catalyzed RNA ligation upon subsequent addition of Mg2+ . Our work shows that RNA-catalyzed RNA assembly can occur efficiently within prebiotically plausible fatty acid vesicles and represents a step toward the replication of primordial genomes within self-replicating protocells.


Assuntos
Células Artificiais , RNA Catalítico , RNA/química , RNA Catalítico/química , Ácidos Graxos , Catálise
20.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090657

RESUMO

Hybridization of short nucleic acid segments (<4 nucleotides) to single-strand templates occurs as a critical intermediate in processes such as non-enzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood due to experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential non-canonical base pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2 to 40 µs depending on the template and temperature. Dinucleotide hybridization and dehybridization involves a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...