Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orphanet J Rare Dis ; 19(1): 32, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291488

RESUMO

Vertebral malformations (VMs) pose a significant global health problem, causing chronic pain and disability. Vertebral defects occur as isolated conditions or within the spectrum of various congenital disorders, such as Klippel-Feil syndrome, congenital scoliosis, spondylocostal dysostosis, sacral agenesis, and neural tube defects. Although both genetic abnormalities and environmental factors can contribute to abnormal vertebral development, our knowledge on molecular mechanisms of numerous VMs is still limited. Furthermore, there is a lack of resource that consolidates the current knowledge in this field. In this pioneering review, we provide a comprehensive analysis of the latest research on the molecular basis of VMs and the association of the VMs-related causative genes with bone developmental signaling pathways. Our study identifies 118 genes linked to VMs, with 98 genes involved in biological pathways crucial for the formation of the vertebral column. Overall, the review summarizes the current knowledge on VM genetics, and provides new insights into potential involvement of biological pathways in VM pathogenesis. We also present an overview of available data regarding the role of epigenetic and environmental factors in VMs. We identify areas where knowledge is lacking, such as precise molecular mechanisms in which specific genes contribute to the development of VMs. Finally, we propose future research avenues that could address knowledge gaps.


Assuntos
Anormalidades Múltiplas , Hérnia Diafragmática , Síndrome de Klippel-Feil , Escoliose , Humanos , Coluna Vertebral/anormalidades , Coluna Vertebral/patologia , Anormalidades Múltiplas/patologia , Síndrome de Klippel-Feil/patologia , Hérnia Diafragmática/patologia
2.
Front Mol Biosci ; 10: 1250714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916192

RESUMO

Background: Split-hand/foot malformation type 1 (SHFM1) refers to the group of rare congenital limb disorders defined by the absence or hypoplasia of the central rays of the autopods with or without accompanying anomalies, such as hearing loss, craniofacial malformation, and ectodermal dysplasia. Consequently, the condition is characterized by clinical variability that hinders diagnostic and counseling procedures. SHFM1 is caused by pathogenic variants affecting the DLX5/6 genes and/or their tissue-specific enhancers at the 7q21.3 locus. Herein, we report on seven patients from five unrelated Polish families affected by variable symptoms of the SHFM1 spectrum, all harboring 7q21.3 or 7q21.2-q21.3 rearrangements, and provide a genotype-phenotype correlation in the studied cohort. Methods: We applied GTG banding, array-based comparative genomic hybridization (aCGH), and whole-genome sequencing (WGS) in order to identify the causative aberrations in all affected patients. Results: The identified pathogenic structural variants included deletions and/or translocations involving the 7q21.3 locus, i.e., t(7;10)(q21.3;q22.2) and t(7;12)(q21.3;q21.2) in all affected individuals. Interestingly, a sporadic carrier of the latter aberration presented the SHFM1 phenotype with additional features overlapping with Baker-Gordon syndrome (BAGOS), which resulted from the translocation breakpoint at chromosome 12 within the SYT1 gene. Conclusion: Clinical variability of the studied cohort reflects the composition of the DLX5/6 regulatory elements that were dislocated from their target genes by chromosomal rearrangements. The correlation of our data with the previously published observations enabled us to update the phenotypic subregions and regulatory units within the SHFM1 locus. In addition, we present the first case of SHFM1 and BAGOS-like phenotype that resulted from translocation breakpoints at chromosomes 7 and 12, both of which were pathogenic, and consequently, we show the first evidence that BAGOS can also result from the regulatory loss-of-function SYT1 mutations. In this paper, we emphasize the utility of sequence-based approaches in molecular diagnostics of disorders caused by regulatory structural variants.

3.
J Appl Genet ; 64(1): 125-134, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586055

RESUMO

Partial 16p trisomy syndrome is a rare disorder typically characterized by psychomotor retardation, prenatal and postnatal growth deficiency, cleft palate, and facial dysmorphism, with some patients also presenting with heart defects and urogenital anomalies. Pure 16p13.3 duplications usually occur de novo, while those duplications that associate with partial monosomy result rather from parental chromosomal translocations. Due to the large size of the aberrations, the majority of patients are identified by standard chromosome analysis. In all published cases, the minimal-causative duplicated region encompasses the CREBBP gene. Here, we report on the patient presenting with psychomotor retardation, femoral hypoplasia, and some features of the partial 16p trisomy syndrome, who carries a complex de novo terminal 16p13.3 microduplication with an overlapping region of amplification without translocation or associated monosomy. In contrast to the previously reported cases, the duplicated region of the patient does not involve CREBBP and other neighboring genes; still, the observed pattern of dysmorphic features of the index is characteristic of the described syndrome. Based on the animal studies and other published cases, we discuss the possible role of the PDK1 and IGFALS genes in the development of limb anomalies, while IFT140 could contribute both to the observed femoral phenotype and heart abnormalities in the patient. To the best of our knowledge, we present a proband harboring the smallest terminal 16p13.3 duplication of the size below 3 Mb. Therefore, our proband with her detailed phenotypic description may be helpful for clinicians who consult patients with this syndrome.


Assuntos
Anormalidades Múltiplas , Cardiopatias Congênitas , Gravidez , Feminino , Humanos , Trissomia/genética , Anormalidades Múltiplas/genética , Deleção Cromossômica , Cardiopatias Congênitas/genética , Síndrome , Translocação Genética
4.
Cells ; 11(7)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406647

RESUMO

Lichens are a source of secondary metabolites with significant pharmacological potential. Data regarding their possible application in glioblastoma (GBM) treatment are, however, scarce. The study aimed at analyzing the mechanism of action of six lichen secondary metabolites: atranorin, caperatic acid, physodic acid, squamatic acid, salazinic acid, and lecanoric acid using two- and three-dimensional GBM cell line models. The parallel artificial membrane permeation assay was used to predict the blood-brain barrier penetration ability of the tested compounds. Their cytotoxicity was analyzed using the MTT test on A-172, T98G, and U-138 MG cells. Flow cytometry was applied to the analysis of oxidative stress, cell cycle distribution, and apoptosis, whereas qPCR and microarrays detected the induced transcriptomic changes. Our data confirm the ability of lichen secondary metabolites to cross the blood-brain barrier and exert cytotoxicity against GBM cells. Moreover, the compounds generated oxidative stress, interfered with the cell cycle, and induced apoptosis in T98G cells. They also inhibited the Wnt/ß-catenin pathway, and this effect was even stronger in case of a co-treatment with temozolomide. Transcriptomic changes in cancer related genes induced by caperatic acid and temozolomide were the most pronounced. Lichen secondary metabolites, caperatic acid in particular, should be further analyzed as potential anti-GBM agents.


Assuntos
Glioblastoma , Líquens , Temozolomida , Via de Sinalização Wnt , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Líquens/química , Temozolomida/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...