Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 38(9): 1563-1583, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34495486

RESUMO

PURPOSE: To evaluate a modified high purity polysorbate 20 (RO HP PS20)-with lower levels of stearate, palmitate and myristate esters than the non-modified HP PS20-as a surfactant in biopharmaceutical drug products (DP). RO HP PS20 was designed to provide functional equivalence as a surfactant while delaying the onset of free fatty acid (FFA) particle formation upon hydrolytic degradation relative to HP PS20. METHODS: Analytical characterization of RO HP PS20 raw material included fatty acid ester (FAE) distribution, higher order ester (HOE) fraction, FFA levels and trace metals. Functional assessments included 1) vial and intravenous bag agitation; 2) oxidation via a placebo and methionine surrogate study; and 3) hydrolytic PS20 degradation studies to evaluate FFA particle formation with and without metal nucleation. RESULTS: Interfacial protection and oxidation propensity were comparable between the two polysorbates. Upon hydrolytic degradation, FFA particle onset was delayed in RO HP PS20. The delay was more pronounced when HOEs of PS20 were preferentially degraded. Furthermore, the hydrolytic degradants of RO HP PS20 formed fewer particles in the presence of spiked aluminum. CONCLUSION: This work highlights the criticality of having tighter control on long chain FAE levels of PS20 to reduce the occurrence of FFA particle formation upon hydrolytic degradation and lower the variability in its onset. By simultaneously meeting compendial PS20 specifications while narrowing the allowable range for each FAE and shifting its composition towards the shorter carbon chain species, RO HP PS20 provides a promising alternative to HP PS20 for biopharmaceutical DPs.


Assuntos
Ácidos Graxos não Esterificados/química , Polissorbatos/química , Produtos Biológicos/química , Química Farmacêutica/métodos , Ésteres/química , Hidrólise , Oxirredução , Tensoativos/química
2.
Pharm Res ; 38(3): 531-548, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33713012

RESUMO

PURPOSE: Enzymatic polysorbate (PS) degradation and resulting free fatty acid (FFA) particles are detrimental to biopharmaceutical drug product (DP) stability. Different types and grades of polysorbate have varying propensity to form FFA particles. This work evaluates the homogenous all-oleate (AO) PS80 alongside heterogeneous PS20 and PS80 grades in terms its propensity to form FFA particles and other important attributes like interfacial protection and oxidation susceptibility. METHODS: FFA particle formation rates were compared by degrading PS using non-immobilized hydrolases and fast degrading DP formulations. Interfacial protection of monoclonal antibodies (mAbs) was assessed by agitation studies in saline using non-degraded and degraded PS. Several antioxidants were assessed for their ability to mitigate AO PS80 oxidation and subsequent mAb oxidation by a 40°C placebo stability study and a 2, 2'-Azobis (2-amidinopropane) dihydrochloride stress model, respectively. RESULTS: Visible and subvisible particles were significantly delayed in AO PS80 formulations compared with heterogeneous PS20 and PS80 formulations. Non-degraded AO PS80 was less protective of mAbs against the air-water interface compared with heterogeneous PS20. Interfacial protection by AO PS80 improved upon degradation owing to high surface activity of FFAs. Diethylenetriaminepentaacetic acid (DTPA) completely mitigated AO PS80 oxidation unlike L-methionine and N-Acetyl-DL-Tryptophan. However, DTPA did not mitigate radical mediated mAb oxidation. CONCLUSION: AO PS80 is a promising alternative to reduce FFA particle formation compared with other PS types and grades. However, limitations observed here---such as lower protection against interfacial stresses and higher propensity for oxidation---need to be considered in assessing the risk/benefit ratio in using AO PS80.


Assuntos
Anticorpos Monoclonais/química , Portadores de Fármacos/química , Ácidos Graxos não Esterificados/química , Ácido Oleico/química , Polissorbatos/química , Composição de Medicamentos , Estabilidade de Medicamentos , Hidrólise , Metionina/química , Oxirredução , Estresse Oxidativo , Tamanho da Partícula , Triptofano/análogos & derivados , Triptofano/química
3.
Biophys Chem ; 236: 22-30, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29331201

RESUMO

The conjugation of high molecular weight polyethylene glycol (PEG) to an active pharmaceutical ingredient (API) is an attractive strategy for the modification of biophysical and biodistribution properties of the API. Indeed, several therapeutic proteins conjugated to PEG have been safely administered in the clinic. While there have been studies on the configuration of these conjugates in solution, investigations on the impact of PEG geometry on protein-PEG conjugate interactions is limited. In this study, we use dynamic light scattering (DLS), rheology, and small-angle neutron scattering (SANS) to investigate the biophysical solution and interaction behavior of a 50kDa Fab protein attached to either a linear or tetrameric (branched) 40kDa PEG molecule. The hydrodynamic radii, diffusivity, viscosity and pair distance distribution function (PDDF) were obtained for the protein-PEG conjugates in solution. An analysis revealed that interactions between unconjugated proteins were quite attractive, however linear PEG-protein conjugates exhibited net repulsive interactions, similar to that of the unconjugated polymer. Tetramer PEG-protein conjugates on the other hand, exhibited a net weak attractive interaction, indicating a more balanced distribution of repulsive and attractive interaction states. Further analysis of the SANS data using geometric models consistent with the PDDF elucidated the conjugates' equilibrium configuration in solution. Insights gained from measurements and analysis used here can also be useful in predicting how conjugate geometries affect viscosity and aggregation behavior, which are important in determining suitable protein-polymer drug formulations.


Assuntos
Polietilenoglicóis/química , Proteínas/química , Difusão Dinâmica da Luz , Hidrodinâmica , Espalhamento a Baixo Ângulo
4.
Biophys J ; 106(8): 1763-70, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24739175

RESUMO

Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals. It is hypothesized that some concentrated mAb solutions exhibit formation of a solution phase consisting of reversibly self-associated aggregates (or reversible clusters), which is speculated to be responsible for their distinct solution properties. Here, we report direct observation of reversible clusters in concentrated solutions of mAbs using neutron spin echo. Specifically, a stable mAb solution is studied across a transition from dispersed monomers in dilute solution to clustered states at more concentrated conditions, where clusters of a preferred size are observed. Once mAb clusters have formed, their size, in contrast to that observed in typical globular protein solutions, is observed to remain nearly constant over a wide range of concentrations. Our results not only conclusively establish a clear relationship between the undesirable high viscosity of some mAb solutions and the formation of reversible clusters with extended open structures, but also directly observe self-assembled mAb protein clusters of preferred small finite size similar to that in micelle formation that dominate the properties of concentrated mAb solutions.


Assuntos
Anticorpos Monoclonais/química , Agregados Proteicos , Eletrólitos/química , Humanos , Modelos Moleculares , Multimerização Proteica , Sais/química , Espalhamento a Baixo Ângulo , Soluções , Viscosidade , Difração de Raios X
5.
J Pharm Sci ; 102(8): 2538-49, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23873347

RESUMO

The high shear rheology of three concentrated solutions of immunoglobulin G1 monoclonal antibodies (mAb1, mAb2, and mAb3), differing only in their complementarity determining regions, was characterized using rotary and capillary rheometry. The more viscous solutions (mAb1 and mAb3) showed non-Newtonian behavior at high shear rates exhibiting both shear thinning and appreciable normal stress differences (NSDs) in the shear rate range γ = 10 to 10(4) s(-1) . The rheograms were retraced after γ is increased and decreased, suggesting reversible self-associations under shear. In contrast, mAb2 solutions showed Newtonian behavior up to γ = 6 × 10(4) s(-1) . The critical shear stress τc , corresponding to the onset of the reduction in the viscosity η, is a measure of mAb equilibrium cluster strength and increased rapidly with concentration for the high viscosity mAb solutions above 100 mg/mL. In addition, decreasing the temperature from 20°C to 5°C increased η at low γ, but shear-thinning was enhanced and its onset occurred at a lower γc . Using an Arrhenius model η = A exp(Ea /kT), the activation energy for viscous flow Ea was found to decrease for mAb1 solutions as γ was increased from 10 to 10(4) s(-1) , suggesting mAb cluster disruption or rearrangement under shear. In contrast, for mAb2, this Ea remained constant in the γ range. Finally, mAb1 and mAb3 solutions showed appreciable NSDs, with their N1 > 0 scaling linearly with γ in the range 10(3) to 10(4) s(-1) , whereas their |N2 /N1 | was less than 0.25 in this region. These suggest anisotropy and deformation of their solution microstructure toward the extensional quadrant of the flow at high γ. In contrast, the NSDs for mAb2 were close to zero indicating that the solution microstructure under shear is practically isotropic.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Anisotropia , Humanos , Concentração Osmolar , Reologia , Estresse Mecânico , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA