Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 23(9)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208642

RESUMO

Glycation, the nonenzymatic reaction between proteins and excess blood sugar, is implicated in multiple disorders and occurs via the formation and accumulation of advanced glycation end products (AGEs). In our previous studies, we demonstrated that the red-leaf variant of the Persicaria hydropiper sprout (Japanese red water pepper, Benitade) is one of the potent plants that inhibit formation of AGEs. In this study, we aimed to identify antiglycative compounds in Benitade. Benitade extracts were prepared with hot water, then fractionated by using high-performance liquid chromatography (HPLC). The antiglycative efficacy of each fraction was evaluated by measuring the formation of fluorescent AGEs (Ex 370 nm/Em 440 nm). Two fractions, which contained peaks at 26.4 min and 31.8 min, showed potent antiglycative efficacy. When we hydrolyzed these peaks, they shifted to 32.5 and 41.4 min, which are the same retention times as cyanidin and quercetin, respectively. Based on thin-layer chromatography, both compounds contained galactose. Finally, ultrahigh-performance liquid chromatography/quadrupole-time of flight mass spectrometry (UHPLC-QqTOF-MS) analyses were performed to determine the structure of those compounds. Overall, we identified two glycosides, cyanidin 3-O-galactoside (idaein) and quercetin 3-O-galactoside (hyperin), as representative antiglycative compounds in Benitade.


Assuntos
Produtos Finais de Glicação Avançada/efeitos dos fármacos , Glicosídeos/farmacologia , Polygonaceae/química , Antocianinas/química , Antocianinas/farmacologia , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Glicosídeos/química , Glicosídeos/isolamento & purificação , Extratos Vegetais/química , Quercetina/análogos & derivados
2.
J Lipid Res ; 57(11): 2005-2014, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27647838

RESUMO

The 24(S)-hydroxycholesterol (24S-OHC), which plays an important role in maintaining brain cholesterol homeostasis, has been shown to possess neurotoxicity. We have previously reported that 24S-OHC esterification by ACAT1 and the resulting lipid droplet (LD) formation are responsible for 24S-OHC-induced cell death. In the present study, we investigate the functional roles of 24S-OHC esters and LD formation in 24S-OHC-induced cell death, and we identify four long-chain unsaturated fatty acids (oleic acid, linoleic acid, arachidonic acid, and DHA) with which 24S-OHC is esterified in human neuroblastoma SH-SY5Y cells treated with 24S-OHC. Here, we find that cotreatment of cells with 24S-OHC and each of these four unsaturated fatty acids increases prevalence of the corresponding 24S-OHC ester and exacerbates induction of cell death as compared with cell death induced by treatment with 24S-OHC alone. Using electron microscopy, we find in the present study that 24S-OHC induces formation of LD-like structures coupled with enlarged endoplasmic reticulum (ER) lumina, and that these effects are suppressed by treatment with ACAT inhibitor. Collectively, these results illustrate that ACAT1-catalyzed esterification of 24S-OHC with long-chain unsaturated fatty acid followed by formation of atypical LD-like structures at the ER membrane is a critical requirement for 24S-OHC-induced cell death.


Assuntos
Acetil-CoA C-Acetiltransferase/genética , Encéfalo/metabolismo , Hidroxicolesteróis/administração & dosagem , Gotículas Lipídicas/metabolismo , Neurônios/metabolismo , Ácido Araquidônico/administração & dosagem , Ácido Araquidônico/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Esterificação/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxicolesteróis/metabolismo , Ácido Linoleico/administração & dosagem , Ácido Linoleico/metabolismo , Gotículas Lipídicas/química , Gotículas Lipídicas/efeitos dos fármacos , Neuroblastoma/metabolismo , Neurônios/patologia , Ácido Oleico/administração & dosagem , Ácido Oleico/metabolismo
3.
Bioorg Med Chem ; 24(11): 2559-66, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27117262

RESUMO

We synthesized several candidates of 24(S)-hydroxycholesterol (24S-OHC) esters, which are involved in neuronal cell death, through catalysis with acyl-CoA:cholesterol acyltransferase-1 (ACAT-1). We studied the regioselectivity of the acylation of the secondary alcohol at the 3- or 24-position of 24S-OHC. The appropriate saturated and unsaturated long-chain fatty acids were esterified with the protected 24S-OHC and then de-protected to afford the desired esters at a satisfactory yield. We then confirmed by HPLC monitoring that the retention times of four esters of 24S-OHC, namely 3-oleate, 3-linoleate, 3-arachidonoate and 3-docosahexaenoate, were consistent with those of 24S-OHC esters observed in 24S-OHC-treated SH-SY5Y cells.


Assuntos
Hidroxicolesteróis/farmacologia , Neuroblastoma/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Hidroxicolesteróis/síntese química , Hidroxicolesteróis/química , Estrutura Molecular , Neuroblastoma/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Nihon Rinsho ; 74(9): 1541-1547, 2016 Sep.
Artigo em Japonês | MEDLINE | ID: mdl-30557490

RESUMO

In the anti-aging medicine, we recommend to assess the skin aging by five categories: wrinkle age, spot age, yellow tint age, elasticity age, and moisture age. Photo-aging (oxidative stress) and glycative stress are major causes of age-related deterioration in the skin. Gly- cative stress finally causes skin accumulation of advanced glycation end products(AGEs), inducing yellow tint, and cross linkage between collagen fibers inducing less elastic skin. Oxidative stress causes skin dark spots through the various processes; excess pigment forma- tion and DNA damages. It also causes wrinkle formation associated with matrix metallopro- teinase(MMP) activation and degeneration of collagen and elastin fibers. Study of oxidative and glycative stress may help identify new anti-aging treatments so that we can achieve the skin rejuvenation.


Assuntos
Colágeno , Estresse Oxidativo , Envelhecimento da Pele , Colágeno/metabolismo , Dano ao DNA , Humanos , Oxirredução , Pele/metabolismo , Envelhecimento da Pele/fisiologia
5.
Free Radic Biol Med ; 87: 366-72, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26164631

RESUMO

24(S)-Hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has been known to play an important role in maintaining cholesterol homeostasis in the brain and has been proposed as a possible biomarker of neurodegenerative disease. Recent studies have revealed diverse functions of 24S-OHC and gained increased attention. For example, 24S-OHC at sublethal concentrations has been found to induce an adaptive response via activation of the liver X receptor signaling pathway, thereby protecting neuronal cells against subsequent oxidative stress. It has also been found that physiological concentrations of 24S-OHC suppress amyloid-ß production via downregulation of amyloid precursor protein trafficking in neuronal cells. On the other hand, high concentrations of 24S-OHC have been found to induce a type of nonapoptotic programmed cell death in neuronal cells expressing little caspase-8. Because neuronal cell death induced by 24S-OHC has been found to proceed by a unique mechanism, which is different from but in some ways similar to necroptosis-necroptosis being a type of programmed necrosis induced by tumor necrosis factor α-neuronal cell death induced by 24S-OHC has been called "necroptosis-like" cell death. 24S-OHC-induced cell death is dependent on the formation of 24S-OHC esters but not on oxidative stress. This review article discusses newly reported aspects of 24S-OHC in neuronal cell death and sheds light on the possible importance of controlling 24S-OHC levels in the brain for preventing neurodegenerative disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hidroxicolesteróis/metabolismo , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo/genética , Peptídeos beta-Amiloides/genética , Animais , Autofagia/genética , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular/genética , Humanos , Receptores X do Fígado , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo
6.
J Biochem ; 158(4): 331-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25998247

RESUMO

Lysophosphatidylcholine (LPC) and oxysterols which are major components in oxidized low-density lipoprotein have been shown to possess an opposite effect on the expression of sterol regulatory element-binding protein-2 (SREBP-2) target genes in endothelial cells. In this study, we aimed at elucidating the mechanisms of activation of SREBP-2 by LPC and evaluating the effects of LPC and 25-hydroxycholesterol (25-HC) on the release of inflammatory cytokines. Human umbilical vein endothelial cells were treated with LPC or oxysterols including 25-HC. LPC activated SREBP-2 within 15 min, resulting in induction of expression of SREBP-2 target genes which were involved in intracellular cholesterol homeostasis. The rapid activation of SREBP-2 was caused by enhanced efflux of intracellular cholesterol, which was evaluated using (14)C-acetate. The LPC-induced activation of SREBP-2 was inhibited by addition of 25-HC. In contrast, both LPC and 25-HC increased release of interleukin-6 (IL-6) and IL-8, respectively and additively. In conclusion, LPC activated SREBP-2 via enhancement of cholesterol efflux, which was suppressed by 25-HC. The release of inflammatory cytokines such as IL-6 and IL-8 in endothelial cells was SREBP-2-independent. LPC and 25-HC may act competitively in cholesterol homeostasis but additively in inflammatory cytokine release.


Assuntos
Colesterol/metabolismo , Endotélio Vascular/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lisofosfatidilcolinas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/agonistas , Regulação para Cima , Transporte Ativo do Núcleo Celular , Aterosclerose/sangue , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Transporte Biológico , Radioisótopos de Carbono , Membrana Celular/imunologia , Membrana Celular/metabolismo , Membrana Celular/patologia , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Células Cultivadas , Colesterol/sangue , Colesterol/química , Regulação para Baixo , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hidroxicolesteróis/análise , Hidroxicolesteróis/sangue , Hidroxicolesteróis/metabolismo , Interleucina-6/agonistas , Interleucina-6/sangue , Interleucina-8/agonistas , Interleucina-8/sangue , Lipoproteínas LDL/sangue , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lisofosfatidilcolinas/análise , Lisofosfatidilcolinas/antagonistas & inibidores , Lisofosfatidilcolinas/sangue , Oxirredução , Proteína de Ligação a Elemento Regulador de Esterol 2/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
7.
Steroids ; 99(Pt B): 230-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25697054

RESUMO

24(S)-Hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, is known to play an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces a type of non-apoptotic programmed necrosis in neuronal cells expressing little caspase-8. Necroptosis has been characterized as a type of programmed necrosis in which activation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) is involved in the signaling pathway. In the present study, we investigated the involvement of these three proteins in 24S-OHC-induced cell death. We found that RIPK1 but neither RIPK3 nor MLKL was expressed in human neuroblastoma SH-SY5Y cells, while all three proteins were expressed in human T lymphoma caspase-8-deficient Jurkat (Jurkat(Cas8-/-)) cells. In Jurkat(Cas8-/-) cells, tumor necrosis factor α (TNFα)-induced cell death was significantly suppressed by treatment with respective inhibitors of RIPK1, RIPK3, and MLKL. In contrast, only RIPK1 inhibitor showed significant suppression of 24S-OHC-induced cell death, and even this was less prominent than was observed in TNFα-induced cell death. In Jurkat(Cas8-/-) cells, knockdown of either RIPK1 or RIPK3 caused moderate but significant suppression of 24S-OHC-induced cell death, but no such effect was observed as a result of knockdown of MLKL. Collectively, these results suggest that, for both SH-SY5Y cells and Jurkat(Cas8-/-) cells, 24S-OHC-induced cell death is dependent on RIPK1 but not on MLKL. We therefore conclude that, in the absence of caspase-8 activity, 24S-OHC induces a necroptosis-like cell death which is RIPK1-dependent but MLKL-independent.


Assuntos
Caspase 8/metabolismo , Hidroxicolesteróis/farmacologia , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia
8.
PLoS One ; 9(9): e108346, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25265386

RESUMO

BACKGROUND: Oxidative stress occurs with disturbed blood flow, inflammation and cardiovascular disease (CVD), yet free-radical scavenging antioxidants have shown limited benefit in human CVD. Thioredoxin-1 (Trx1) is a thiol antioxidant protecting against non-radical oxidants by controlling protein thiol/disulfide status; Trx1 translocates from cytoplasm to cell nuclei due to stress signaling, facilitates DNA binding of transcription factors, e.g., NF-κB, and potentiates inflammatory signaling. Whether increased nuclear Trx1 contributes to proatherogenic signaling is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In vitro and in vivo atherogenic models were used to test for nuclear translocation of Trx1 and associated proinflammatory signaling. Disturbed flow by oscillatory shear stress stimulated Trx1 nuclear translocation in endothelial cells. Elevation of nuclear Trx1 in endothelial cells and transgenic (Tg) mice potentiated disturbed flow-stimulated proinflammatory signaling including NF-κB activation and increased expression of cell adhesion molecules and cytokines. Tg mice with increased nuclear Trx1 had increased carotid wall thickening due to disturbed flow but no significant differences in serum lipids or weight gain compared to wild type mice. Redox proteomics data of carotid arteries showed that disturbed flow stimulated protein thiol oxidation, and oxidation was higher in Tg mice than wild type mice. CONCLUSIONS/SIGNIFICANCE: Translocation of Trx1 from cytoplasm to cell nuclei plays an important role in disturbed flow-stimulated proatherogenesis with greater cytoplasmic protein oxidation and an enhanced nuclear transcription factor activity. The results suggest that pharmacologic interventions to inhibit nuclear translocation of Trx1 may provide a new approach to prevent inflammatory diseases or progression.


Assuntos
Aterosclerose/patologia , Artérias Carótidas/patologia , Núcleo Celular/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Tiorredoxinas/metabolismo , Animais , Antioxidantes , Velocidade do Fluxo Sanguíneo , Doenças Cardiovasculares/patologia , Moléculas de Adesão Celular/biossíntese , Linhagem Celular , Citocinas/biossíntese , Humanos , Inflamação/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Oxirredução , Estresse Oxidativo , Transdução de Sinais/imunologia , Estresse Fisiológico , Tiorredoxinas/biossíntese , Tiorredoxinas/genética , Fator de Transcrição RelA/agonistas , Fator de Transcrição RelA/biossíntese , Fator de Transcrição RelA/metabolismo , Molécula 1 de Adesão de Célula Vascular/biossíntese
9.
Arterioscler Thromb Vasc Biol ; 34(10): 2268-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25147335

RESUMO

OBJECTIVE: Fluid shear stress intimately regulates vasculogenesis and endothelial homeostasis. The canonical Wnt/ß-catenin signaling pathways play an important role in differentiation and proliferation. In this study, we investigated whether shear stress activated angiopoietin-2 (Ang-2) via the canonical Wnt signaling pathway with an implication in vascular endothelial repair. APPROACH AND RESULTS: Oscillatory shear stress upregulated both TOPflash Wnt reporter activities and the expression of Ang-2 mRNA and protein in human aortic endothelial cells accompanied by an increase in nuclear ß-catenin intensity. Oscillatory shear stress-induced Ang-2 and Axin-2 mRNA expression was downregulated in the presence of a Wnt inhibitor, IWR-1, but was upregulated in the presence of a Wnt agonist, LiCl. Ang-2 expression was further downregulated in response to a Wnt signaling inhibitor, DKK-1, but was upregulated by Wnt agonist Wnt3a. Both DKK-1 and Ang-2 siRNA inhibited endothelial cell migration and tube formation, which were rescued by human recombinant Ang-2. Both Ang-2 and Axin-2 mRNA downregulation was recapitulated in the heat-shock-inducible transgenic Tg(hsp70l:dkk1-GFP) zebrafish embryos at 72 hours post fertilization. Ang-2 morpholino injection of Tg (kdrl:GFP) fish impaired subintestinal vessel formation at 72 hours post fertilization, which was rescued by zebrafish Ang-2 mRNA coinjection. Inhibition of Wnt signaling with IWR-1 also downregulated Ang-2 and Axin-2 expression and impaired vascular repair after tail amputation, which was rescued by zebrafish Ang-2 mRNA injection. CONCLUSIONS: Shear stress activated Ang-2 via canonical Wnt signaling in vascular endothelial cells, and Wnt-Ang-2 signaling is recapitulated in zebrafish embryos with a translational implication in vascular development and repair.


Assuntos
Angiopoietina-2/metabolismo , Mecanotransdução Celular , Neovascularização Fisiológica , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Angiopoietina-2/genética , Animais , Animais Geneticamente Modificados , Proteína Axina/genética , Proteína Axina/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Interferência de RNA , RNA Mensageiro/metabolismo , Estresse Fisiológico , Fatores de Tempo , Transfecção , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
10.
Nat Commun ; 4: 3000, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24346612

RESUMO

MicroRNAs (miRNAs) regulate cardiovascular biology and disease, but the role of flow-sensitive microRNAs in atherosclerosis is still unclear. Here we identify miRNA-712 (miR-712) as a mechanosensitive miRNA upregulated by disturbed flow (d-flow) in endothelial cells, in vitro and in vivo. We also show that miR-712 is derived from an unexpected source, pre-ribosomal RNA, in an exoribonuclease-dependent but DiGeorge syndrome critical region 8 (DGCR8)-independent manner, suggesting that it is an atypical miRNA. Mechanistically, d-flow-induced miR-712 downregulates tissue inhibitor of metalloproteinase 3 (TIMP3) expression, which in turn activates the downstream matrix metalloproteinases (MMPs) and a disintegrin and metalloproteases (ADAMs) and stimulate pro-atherogenic responses, endothelial inflammation and permeability. Furthermore, silencing miR-712 by anti-miR-712 rescues TIMP3 expression and prevents atherosclerosis in murine models of atherosclerosis. Finally, we report that human miR-205 shares the same 'seed sequence' as murine-specific miR-712 and also targets TIMP3 in a flow-dependent manner. Targeting these mechanosensitive 'athero-miRs' may provide a new treatment paradigm in atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Endotélio/patologia , Inflamação/metabolismo , MicroRNAs/metabolismo , RNA Ribossômico/metabolismo , Animais , Apolipoproteínas E/genética , Doenças Cardiovasculares/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Miócitos de Músculo Liso/metabolismo , Permeabilidade , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores
11.
J Cell Biol ; 193(5): 805-7, 2011 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-21624951

RESUMO

Disturbed blood flow induces apoptosis of vascular endothelial cells, which causes atherosclerosis. In this issue, Heo et al. (2011. J. Cell Biol. doi:10.1083/jcb.201010051) sheds light on p53's role in this phenomenon. Disturbed flow induces peroxynitrite production, which activates protein kinase C ζ and it's binding to the E3 SUMO (small ubiquitin-like modifier) ligase PIASy (protein inhibitor of activated STATy). This leads to p53 SUMOylation and its export to the cytosol, where it binds to the antiapoptotic protein Bcl-2 to induce apoptosis.


Assuntos
Células Endoteliais/metabolismo , Fluxo Sanguíneo Regional , Sumoilação , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Citosol/metabolismo , Células Endoteliais/patologia , Humanos , Ácido Peroxinitroso/biossíntese , Ácido Peroxinitroso/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteína Quinase C/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
12.
Antioxid Redox Signal ; 15(5): 1379-88, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20919940

RESUMO

Fluid shear stress is intimately linked with vascular oxidative stress and atherosclerosis. We posited that atherogenic oscillatory shear stress (OSS) induced mitochondrial superoxide (mtO2•-) production via NADPH oxidase and c-Jun NH(2)-terminal kinase (JNK-1 and JNK-2) signaling. In bovine aortic endothelial cells, OSS (±3 dyn/cm2) induced JNK activation, which peaked at 1 h, accompanied by an increase in fluorescein isothiocyanate-conjugated JNK fluorescent and MitoSOX Red (specific for mtO2•- production) intensities. Pretreatment with apocynin (NADPH oxidase inhibitor) or N-acetyl cysteine (antioxidant) significantly attenuated OSS-induced JNK activation. Apocynin further reduced OSS-mediated dihydroethidium and MitoSOX Red intensities specific for cytosolic O2•- and mtO2•- production, respectively. As a corollary, transfecting bovine aortic endothelial cells with JNK siRNA (siJNK) and pretreating with SP600125 (JNK inhibitor) significantly attenuated OSS-mediated mtO2•- production. Immunohistochemistry on explants of human coronary arteries further revealed prominent phosphorylated JNK staining in OSS-exposed regions. These findings indicate that OSS induces mtO2•- production via NADPH oxidase and JNK activation relevant for vascular oxidative stress.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Transdução de Sinais/fisiologia , Estresse Mecânico , Superóxidos/metabolismo , Animais , Bovinos , Vasos Coronários/metabolismo , Citosol/metabolismo , Células Endoteliais/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hemodinâmica/fisiologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/genética , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo , Resistência ao Cisalhamento
13.
Antioxid Redox Signal ; 15(5): 1415-26, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21126170

RESUMO

Fluid shear stress plays a critical role in the regulation of vascular biology and its pathology, such as atherosclerosis, via modulation of redox balance. Both pro-atherogenic (either oscillatory or turbulent, nonunidirectional) shear stress and anti-atherogenic (either steady or pulsatile, unidirectional laminar) shear stress stimulate production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are involved in signal transduction of gene expression. Nonunidirectional shear stress induces pro-atherogenic genes encoding adhesion molecules and chemokines in a manner dependent on production of both superoxide and nitric oxide. Steady or pulsatile laminar shear stress induces expression of genes encoding cytoprotective enzymes for glutathione biosynthesis and detoxification, which are regulated by the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). We show that pulsatile laminar shear stress (PLSS)-induced expression of adhesion molecules and chemokines was enhanced in human umbilical vein endothelial cells (HUVEC) treated with Nrf2 siRNA and arterial endothelial cells isolated from Nrf2 knockout mice. Hence, we propose the hypothesis that PLSS maintains the endothelium in an anti-atherogenic state via intracellular antioxidant levels increased as a result of Nrf2 activation, thereby preventing excess ROS/RNS production required for pro-atherogenic gene expression.


Assuntos
Endotélio Vascular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Mecânico , Animais , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Hemodinâmica/fisiologia , Humanos , Camundongos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistência ao Cisalhamento
14.
Part Fibre Toxicol ; 7: 6, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20307321

RESUMO

BACKGROUND: Epidemiological evidence supports the association between exposure to ambient particulate matter (PM) and cardiovascular diseases. Chronic exposure to ultrafine particles (UFP; Dp <100 nm) is reported to promote atherosclerosis in ApoE knockout mice. Atherogenesis-prone factors induce endothelial dysfunction that contributes to the initiation and progression of atherosclerosis. We previously demonstrated that UFP induced oxidative stress via c-Jun N-terminal Kinases (JNK) activation in endothelial cells. In this study, we investigated pro-inflammatory responses of human aortic endothelial cells (HAEC) exposed to UFP emitted from a diesel truck under an idling mode (UFP1) and an urban dynamometer driving schedule (UFP2), respectively. We hypothesize that UFP1 and UFP2 with distinct chemical compositions induce differential pro-inflammatory responses in endothelial cells. RESULTS: UFP2 contained a higher level of redox active organic compounds and metals on a per PM mass basis than UFP1. While both UFP1 and UFP2 induced superoxide production and up-regulated stress response genes such as heme oxygenease-1 (HO-1), OKL38, and tissue factor (TF), only UFP2 induced the expression of pro-inflammatory genes such as IL-8 (2.8 +/- 0.3-fold), MCP-1 (3.9 +/- 0.4-fold), and VCAM (6.5 +/- 1.1-fold) (n = 3, P < 0.05). UFP2-exposed HAEC also bound to a higher number of monocytes than UFP1-exposed HAEC (Control = 70 +/- 7.5, UFP1 = 106.7 +/- 12.5, UFP2 = 137.0 +/- 8.0, n = 3, P < 0.05). Adenovirus NF-kappaB Luciferase reporter assays revealed that UFP2, but not UFP1, significantly induced NF-kappaB activities. NF-kappaB inhibitor, CAY10512, significantly abrogated UFP2-induced pro-inflammatory gene expression and monocyte binding. CONCLUSION: While UFP1 induced higher level of oxidative stress and stress response gene expression, only UFP2, with higher levels of redox active organic compounds and metals, induced pro-inflammatory responses via NF-kappaB signaling. Thus, UFP with distinct chemical compositions caused differential response patterns in endothelial cells.


Assuntos
Poluentes Atmosféricos/toxicidade , Endotélio Vascular/efeitos dos fármacos , NF-kappa B/metabolismo , Nanopartículas , Transdução de Sinais/efeitos dos fármacos , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/análise , Aorta/efeitos dos fármacos , Aorta/metabolismo , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Endotélio Vascular/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Tamanho da Partícula , Material Particulado/toxicidade , Regulação para Cima/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Emissões de Veículos/análise
15.
Ann Biomed Eng ; 38(7): 2346-57, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20221900

RESUMO

Zebrafish is an emerging model system for cardiac conduction and regeneration. Zebrafish heart regenerates after 20% ventricular resection within 60 days. Whether cardiac conduction phenotype correlated with cardiomyocyte regeneration remained undefined. Longitudinal monitoring of the adult zebrafish heart (n = 12) was performed in terms of atrial contraction (PR intervals), ventricular depolarization (QRS complex) and repolarization (heart rated corrected QTc interval). Baseline electrocardiogram (ECG) signals were recorded one day prior to resection and twice per week over 59 days. Immunostaining for gap junctions with anti-Connexin-43 antibody was compared between the sham (n = 5) and ventricular resection at 60 days post-resection (dpr) (n = 7). Heart rate variability, QTc prolongation and J-point depression developed in the resected group but not in the sham. Despite a trend toward heart rate variability in response to ventricular resection, the differences between the resected and sham fish were, by and large, statistically insignificant. At 10 dpr, J-point depression was statistically significant (sham: -0.179 +/- 0.061 mV vs. ventricular resection: -0.353 +/- 0.105 mV, p < 0.01, n = 7). At 60 days, histology revealed either cardiomyocyte regeneration (n = 4) or scar tissues (n = 3). J-point depression was no longer statistically significant at 59 dpr (sham: -0.114 +/- 0.085 mV; scar tissue: -0.268 +/- 0.178 mV, p > 0.05, n = 3; regeneration: -0.209 +/- 0.119 mV, p > 0.05, n = 4). Despite positive Connexin-43 staining in the regeneration group, QTc intervals remained prolonged (sham: 325 +/- 42 ms, n = 5; scar tissues: 534 +/- 51 ms, p < 0.01, n = 3; regeneration: 496 +/- 31 ms, p < 0.01, n = 4). Thus, we observed delayed electric repolarization in either the regenerated hearts or scar tissues. Moreover, early regenerated cardiomyocytes lacked the conduction phenotypes of the sham fish.


Assuntos
Eletrocardiografia , Coração/fisiologia , Regeneração/fisiologia , Peixe-Zebra/fisiologia , Animais , Frequência Cardíaca/fisiologia , Ventrículos do Coração , Miócitos Cardíacos , Transdução de Sinais
16.
Arterioscler Thromb Vasc Biol ; 30(3): 436-41, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20139358

RESUMO

OBJECTIVE: Oxidized low-density lipoprotein (oxLDL) modulates intracellular redox status and induces apoptosis in endothelial cells. However, the signal pathways and molecular mechanism remain unknown. In this study, we investigated the role of manganese superoxide dismutase (Mn-SOD) on oxLDL-induced apoptosis via c-Jun NH2-terminal kinase (JNK)-mediated ubiquitin/proteasome pathway. METHODS AND RESULTS: OxLDL induced JNK phosphorylation that peaked at 30 minutes in human aortic endothelial cells. Fluorescence-activated cell sorting analysis revealed that oxLDL increased mitochondrial superoxide production by 1.88+/-0.19-fold and mitochondrial membrane potential by 18%. JNK small interference RNA (siJNK) reduced oxLDL-induced mitochondrial superoxide production by 88.4% and mitochondrial membrane potential by 61.7%. OxLDL did not affect Mn-SOD mRNA expression, but it significantly reduced Mn-SOD protein level, which was restored by siJNK. Immunoprecipitation by ubiquitin antibody revealed that oxLDL increased ubiquitination of Mn-SOD, which was inhibited by siJNK. OxLDL-induced caspase-3 activities were also attenuated by siJNK but were enhanced by Mn-SOD small interfering RNA. Furthermore, overexpression of Mn-SOD abrogated oxLDL-induced caspase-3 activities. CONCLUSIONS: OxLDL-induced JNK activation regulates mitochondrial redox status and Mn-SOD protein degradation via JNK-dependent ubiquitination, leading to endothelial cell apoptosis.


Assuntos
Apoptose/fisiologia , Endotélio Vascular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipoproteínas LDL/metabolismo , Mitocôndrias/metabolismo , Superóxido Dismutase/metabolismo , Ubiquitinação/fisiologia , Aorta/citologia , Aorta/metabolismo , Caspase 3/metabolismo , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Oxirredução , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/fisiologia
17.
Biochem Biophys Res Commun ; 388(2): 406-12, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19666009

RESUMO

Mitochondrial dysfunction is intimately involved in cardiovascular diseases. Mitochondrial membrane potential (DeltaPsi(m)) is coupled with oxidative phosphorylation to drive ATP synthesis. In this study, we examined the effect of physiological pulsatile shear stress (PSS) on DeltaPsi(m) and the role of Mn-SOD expression on DeltaPsi(m). Confluent human aortic endothelial cells (HAEC) were exposed to PSS, and DeltaPsi(m) was monitored using tetramethylrhodamine methyl ester (TMRM(+)), a mitochondrial membrane potential probe. PSS significantly increased DeltaPsi(m) and the change in DeltaPsi(m) was a dynamic process. DeltaPsi(m) returned to baseline level after PSS for 2h followed by static state for 4h. Mitochondrial Mn-SOD expression and activities were also significantly up-regulated in response to PSS. Silencing Mn-SOD attenuated PSS-mediated DeltaPsi(m) increase while adding Mn-SOD mimetic, MnTMPyP, increased DeltaPsi(m) to the similar extent as induced by PSS. Our findings suggest that PSS-increased mitochondrial DeltaPsi(m), in part, via Mn-SOD up-regulation.


Assuntos
Endotélio Vascular/fisiologia , Potencial da Membrana Mitocondrial , Fluxo Pulsátil , Resistência ao Cisalhamento , Estresse Mecânico , Superóxido Dismutase/biossíntese , Aorta/enzimologia , Aorta/fisiologia , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fluxo Pulsátil/efeitos dos fármacos , Rodaminas/farmacologia , Regulação para Cima
18.
J Biomech ; 42(10): 1429-1437, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19457490

RESUMO

The advent of microelectromechanical systems (MEMS) sensors has enabled real-time wall shear stress (WSS) measurements with high spatial and temporal resolution in a 3-D bifurcation model. To optimize intravascular shear stress assessment, we evaluated the feasibility of catheter/coaxial wire-based MEMS sensors in the abdominal aorta of the New Zealand white (NZW) rabbits. Theoretical and computational fluid dynamics (CFD) analyses were performed. Fluoroscope and angiogram provided the geometry of aorta, and the Doppler ultrasound system provided the pulsatile flow velocity for the boundary conditions. The physical parameters governing the shear stress assessment in NZW rabbits included (1) the position and distance from which the MEMS sensors were mounted to the terminal end of coaxial wire or the entrance length, (L(e)), (2) diameter ratios of aorta to the coaxial wire (D(aorta) /D(coaxial wire)=1.5-9.5), and (3) the range of Reynolds numbers (116-1550). At an aortic diameter of 2.4mm and a maximum Reynolds number of 212 (a mean Reynolds number of 64.2), the time-averaged shear stress (tau(ave)) was computed to be 10.06 dyn cm(-2) with a systolic peak at 33.18 dyn cm(-2). In the presence of a coaxial wire (D(aorta)/D(coaxial wire)=6 and L(e)=1.18 cm), the tau(ave) value increased to 15.54 dyn cm(-2) with a systolic peak at 51.25 dyn cm(-2). Real-time intravascular shear stress assessment by the MEMS sensor revealed an tau(ave) value of 11.92 dyn cm(-2) with a systolic peak at 47.04 dyn cm(-2). The difference between CFD and experimental tau(ave) was 18.5%. These findings provided important insights into packaging the MEMS sensors to optimize in vivo shear stress assessment.


Assuntos
Aorta Abdominal/fisiologia , Hemorreologia , Modelos Cardiovasculares , Animais , Aorta Abdominal/diagnóstico por imagem , Fenômenos Biomecânicos , Engenharia Biomédica , Imageamento Tridimensional , Coelhos , Radiografia , Estresse Mecânico , Ultrassonografia
19.
Free Radic Biol Med ; 46(6): 775-82, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19154785

RESUMO

Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O(2)(-)) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O(2)(-) production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.


Assuntos
Células Endoteliais/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Nanopartículas , Material Particulado/metabolismo , Acetilcisteína/farmacologia , Antracenos/farmacologia , Aorta/patologia , Células Cultivadas , Células Endoteliais/patologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Gasolina , Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 9 Ativada por Mitógeno/genética , Estresse Oxidativo , RNA Interferente Pequeno/genética , Superóxidos/metabolismo , Tromboplastina/genética , Tromboplastina/metabolismo
20.
Methods Enzymol ; 441: 111-50, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18554532

RESUMO

Hemodynamics, specifically, fluid shear stress, modulates the focal nature of atherosclerosis. Shear stress induces vascular oxidative stress via the activation of membrane-bound NADPH oxidases present in vascular smooth muscle cells, fibroblasts, and phagocytic mononuclear cells. Shear stress acting on the endothelial cells at arterial bifurcations or branching points regulates both NADPH oxidase and nitric oxide (NO) synthase activities. The former is considered a major source of oxygen-centered radicals (i.e., superoxide anion [O2(.-)]) that give rise to oxidative stress; the latter is a source of nitrogen-centered radicals (i.e., nitric oxide [NO]) that give rise to nitrative/nitrosative stress. In addition to conventional biochemical analyses, the emerging microelectromechanical systems (MEMS) provide spatial and temporal resolutions to investigate the mechanisms whereby the characteristics of shear stress regulate the biological activities of endothelial cells at the complicated arterial geometry. In parallel, the development of MEMS liquid chromatography (LC) provides a new venue to measure circulating oxidized low-density lipoprotein (ox-LDL) particles as a lab-on-a chip platform. Nanowire-based field effect transistors further pave the way for a high throughput approach to analyze the LDL redox state. Integration of MEMS with oxidative biology is synergistic in assessing vascular oxidative stress. The MEMS LC provides an emerging lab-on-a-chip platform for ox-LDL analysis. In this context, this chapter has integrated expertise from the fields of vascular biology and oxidative biology to address the dynamics of inflammatory responses.


Assuntos
Aorta/metabolismo , Células Endoteliais/metabolismo , Nanotecnologia/métodos , Estresse Oxidativo/fisiologia , Sequência de Aminoácidos , Animais , Aorta/química , Aorta/fisiologia , Células Endoteliais/química , Células Endoteliais/fisiologia , Humanos , Microcirculação/química , Microcirculação/metabolismo , Microcirculação/fisiologia , Dados de Sequência Molecular , Nanotecnologia/instrumentação , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...