Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Childs Nerv Syst ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642113

RESUMO

BACKGROUND: Texture analysis extracts many quantitative image features, offering a valuable, cost-effective, and non-invasive approach for individual medicine. Furthermore, multimodal machine learning could have a large impact for precision medicine, as texture biomarkers can underlie tissue microstructure. This study aims to investigate imaging-based biomarkers of radio-induced neurotoxicity in pediatric patients with metastatic medulloblastoma, using radiomic and dosiomic analysis. METHODS: This single-center study retrospectively enrolled children diagnosed with metastatic medulloblastoma (MB) and treated with hyperfractionated craniospinal irradiation (CSI). Histological confirmation of medulloblastoma and baseline follow-up magnetic resonance imaging (MRI) were mandatory. Treatment involved helical tomotherapy (HT) delivering a dose of 39 Gray (Gy) to brain and spinal axis and a posterior fossa boost up to 60 Gy. Clinical outcomes, such as local and distant brain control and neurotoxicity, were recorded. Radiomic and dosiomic features were extracted from tumor regions on T1, T2, FLAIR (fluid-attenuated inversion recovery) MRI-maps, and radiotherapy dose distribution. Different machine learning feature selection and reduction approaches were performed for supervised and unsupervised clustering. RESULTS: Forty-eight metastatic medulloblastoma patients (29 males and 19 females) with a mean age of 12 ± 6 years were enrolled. For each patient, 332 features were extracted. Greater level of abstraction of input data by combining selection of most performing features and dimensionality reduction returns the best performance. The resulting one-component radiomic signature yielded an accuracy of 0.73 with sensitivity, specificity, and precision of 0.83, 0.64, and 0.68, respectively. CONCLUSIONS: Machine learning radiomic-dosiomic approach effectively stratified pediatric medulloblastoma patients who experienced radio-induced neurotoxicity. Strategy needs further validation in external dataset for its potential clinical use in ab initio management paradigms of medulloblastoma.

2.
Med Phys ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38432192

RESUMO

BACKGROUND: The increasing use of complex and high dose-rate treatments in radiation therapy necessitates advanced detectors to provide accurate dosimetry. Rather than relying on pre-treatment quality assurance (QA) measurements alone, many countries are now mandating the use of in vivo dosimetry, whereby a dosimeter is placed on the surface of the patient during treatment. Ideally, in vivo detectors should be flexible to conform to a patient's irregular surfaces. PURPOSE: This study aims to characterize a novel hydrogenated amorphous silicon (a-Si:H) radiation detector for the dosimetry of therapeutic x-ray beams. The detectors are flexible as they are fabricated directly on a flexible polyimide (Kapton) substrate. METHODS: The potential of this technology for application as a real-time flexible detector is investigated through a combined dosimetric and flexibility study. Measurements of fundamental dosimetric quantities were obtained including output factor (OF), dose rate dependence (DPP), energy dependence, percentage depth dose (PDD), and angular dependence. The response of the a-Si:H detectors investigated in this study are benchmarked directly against commercially available ionization chambers and solid-state diodes currently employed for QA practices. RESULTS: The a-Si:H detectors exhibit remarkable dose linearities in the direct detection of kV and MV therapeutic x-rays, with calibrated sensitivities ranging from (0.580 ± 0.002) pC/cGy to (19.36 ± 0.10) pC/cGy as a function of detector thickness, area, and applied bias. Regarding dosimetry, the a-Si:H detectors accurately obtained OF measurements that parallel commercially available detector solutions. The PDD response closely matched the expected profile as predicted via Geant4 simulations, a PTW Farmer ionization chamber and a PTW ROOS chamber. The most significant variation in the PDD performance was 5.67%, observed at a depth of 3 mm for detectors operated unbiased. With an external bias, the discrepancy in PDD response from reference data was confined to ± 2.92% for all depths (surface to 250 mm) in water-equivalent plastic. Very little angular dependence is displayed between irradiations at angles of 0° and 180°, with the most significant variation being a 7.71% decrease in collected charge at a 110° relative angle of incidence. Energy dependence and dose per pulse dependence are also reported, with results in agreement with the literature. Most notably, the flexibility of a-Si:H detectors was quantified for sample bending up to a radius of curvature of 7.98 mm, where the recorded photosensitivity degraded by (-4.9 ± 0.6)% of the initial device response when flat. It is essential to mention that this small bending radius is unlikely during in vivo patient dosimetry. In a more realistic scenario, with a bending radius of 15-20 mm, the variation in detector response remained within ± 4%. After substantial bending, the detector's photosensitivity when returned to a flat condition was (99.1 ± 0.5)% of the original response. CONCLUSIONS: This work successfully characterizes a flexible detector based on thin-film a-Si:H deposited on a Kapton substrate for applications in therapeutic x-ray dosimetry. The detectors exhibit dosimetric performances that parallel commercially available dosimeters, while also demonstrating excellent flexibility results.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38403521

RESUMO

BACKGROUND: Virtual Environment Radiotherapy Training (VERT) is a virtual tool used in radiotherapy with a dual purpose: patient education and student training. This scoping review aims to identify the applications of VERT to acquire new skills in specific activities of Radiation Therapists (RTTs) clinical practice and education as reported in the literature. This scoping review will identify any gaps in this field and provide suggestions for future research. METHODS: In accordance with Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) extension for scoping reviews and Arskey and O'Malley framework, an electronic search was conducted to retrieve complete original studies, reporting the use and implementation of VERT for teaching skills to RTTs. Studies were searched in PubMed, EMBASE, and SCOPUS databases and included retrieved articles if they investigated the use of VERT for RTTs training. RESULTS: Of 251 titles, 16 articles fulfilled the selection criteria and most of the studies were qualitative evaluation studies (n=5) and pilot studies (n=4). The specific use of VERT for RTTs training was grouped into four categories (Planning CT, Set-up, IGRT, and TPS). CONCLUSION: The use of VERT was described for each category by examining the interaction of the students or trainee RTTs in performing each phase within the virtual environment and describing their perceptions. This system Virtual Reality (VR) enables the development of specific motor skills without interfering and pressurising clinical resources by using clinical equipment in a risk-free offline environment, improving the clinical confidence of students or trainee RTTs. However, even if VR can be integrated into the RTTs training with a great advantage, VERT has still not been embraced. This mainly due to the presence of significant issues and limitations, such as inadequate coverage within the current literature, software and hardware costs.

4.
Radiat Oncol ; 18(1): 176, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904150

RESUMO

BACKGROUND: This study aimed to evaluate an a-priori multicriteria plan optimization algorithm (mCycle) for locally advanced breast cancer radiation therapy (RT) by comparing automatically generated VMAT (Volumetric Modulated Arc Therapy) plans (AP-VMAT) with manual clinical Helical Tomotherapy (HT) plans. METHODS: The study included 25 patients who received postoperative RT using HT. The patient cohort had diverse target selections, including both left and right breast/chest wall (CW) and III-IV node, with or without internal mammary node (IMN) and Simultaneous Integrated Boost (SIB). The Planning Target Volume (PTV) was obtained by applying a 5 mm isotropic expansion to the CTV (Clinical Target Volume), with a 5 mm clip from the skin. Comparisons of dosimetric parameters and delivery/planning times were conducted. Dosimetric verification of the AP-VMAT plans was performed. RESULTS: The study showed statistically significant improvements in AP-VMAT plans compared to HT for OARs (Organs At Risk) mean dose, except for the heart and ipsilateral lung. No significant differences in V95% were observed for PTV breast/CW and PTV III-IV, while increased coverage (higher V95%) was seen for PTV IMN in AP-VMAT plans. HT plans exhibited smaller values of PTV V105% for breast/CW and III-IV, with no differences in PTV IMN and boost. HT had an average (± standard deviation) delivery time of (17 ± 8) minutes, while AP-VMAT took (3 ± 1) minutes. The average γ passing rate for AP-VMAT plans was 97%±1%. Planning times reduced from an average of 6 h for HT to about 2 min for AP-VMAT. CONCLUSIONS: Comparing AP-VMAT plans with clinical HT plans showed similar or improved quality. The implementation of mCycle demonstrated successful automation of the planning process for VMAT treatment of locally advanced breast cancer, significantly reducing workload.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Humanos , Feminino , Radioterapia de Intensidade Modulada/métodos , Neoplasias da Mama/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria/métodos , Órgãos em Risco
5.
Phys Med Biol ; 68(13)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37267990

RESUMO

Objective. Microbeam radiation therapy (MRT) is an alternative emerging radiotherapy treatment modality which has demonstrated effective radioresistant tumour control while sparing surrounding healthy tissue in preclinical trials. This apparent selectivity is achieved through MRT combining ultra-high dose rates with micron-scale spatial fractionation of the delivered x-ray treatment field. Quality assurance dosimetry for MRT must therefore overcome a significant challenge, as detectors require both a high dynamic range and a high spatial resolution to perform accurately.Approach. In this work, a series of radiation hard a-Si:H diodes, with different thicknesses and carrier selective contact configurations, have been characterised for x-ray dosimetry and real-time beam monitoring applications in extremely high flux beamlines utilised for MRT at the Australian Synchrotron.Results. These devices displayed superior radiation hardness under constant high dose-rate irradiations on the order of 6000 Gy s-1, with a variation in response of 10% over a delivered dose range of approximately 600 kGy. Dose linearity of each detector to x-rays with a peak energy of 117 keV is reported, with sensitivities ranging from (2.74 ± 0.02) nC/Gy to (4.96 ± 0.02) nC/Gy. For detectors with 0.8µm thick active a-Si:H layer, their operation in an edge-on orientation allows for the reconstruction of micron-size beam profiles (microbeams). The microbeams, with a nominal full-width-half-max of 50µm and a peak-to-peak separation of 400µm, were reconstructed with extreme accuracy. The full-width-half-max was observed as 55 ± 1µm. Evaluation of the peak-to-valley dose ratio and dose-rate dependence of the devices, as well as an x-ray induced charge (XBIC) map of a single pixel is also reported.Significance. These devices based on novel a-Si:H technology possess a unique combination of accurate dosimetric performance and radiation resistance, making them an ideal candidate for x-ray dosimetry in high dose-rate environments such as FLASH and MRT.


Assuntos
Silício , Síncrotrons , Raios X , Austrália , Radiometria/métodos
6.
Eur Radiol Exp ; 7(1): 18, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032383

RESUMO

BACKGROUND: The role of computed tomography (CT) in the diagnosis and characterization of coronavirus disease 2019 (COVID-19) pneumonia has been widely recognized. We evaluated the performance of a software for quantitative analysis of chest CT, the LungQuant system, by comparing its results with independent visual evaluations by a group of 14 clinical experts. The aim of this work is to evaluate the ability of the automated tool to extract quantitative information from lung CT, relevant for the design of a diagnosis support model. METHODS: LungQuant segments both the lungs and lesions associated with COVID-19 pneumonia (ground-glass opacities and consolidations) and computes derived quantities corresponding to qualitative characteristics used to clinically assess COVID-19 lesions. The comparison was carried out on 120 publicly available CT scans of patients affected by COVID-19 pneumonia. Scans were scored for four qualitative metrics: percentage of lung involvement, type of lesion, and two disease distribution scores. We evaluated the agreement between the LungQuant output and the visual assessments through receiver operating characteristics area under the curve (AUC) analysis and by fitting a nonlinear regression model. RESULTS: Despite the rather large heterogeneity in the qualitative labels assigned by the clinical experts for each metric, we found good agreement on the metrics compared to the LungQuant output. The AUC values obtained for the four qualitative metrics were 0.98, 0.85, 0.90, and 0.81. CONCLUSIONS: Visual clinical evaluation could be complemented and supported by computer-aided quantification, whose values match the average evaluation of several independent clinical experts. KEY POINTS: We conducted a multicenter evaluation of the deep learning-based LungQuant automated software. We translated qualitative assessments into quantifiable metrics to characterize coronavirus disease 2019 (COVID-19) pneumonia lesions. Comparing the software output to the clinical evaluations, results were satisfactory despite heterogeneity of the clinical evaluations. An automatic quantification tool may contribute to improve the clinical workflow of COVID-19 pneumonia.


Assuntos
COVID-19 , Aprendizado Profundo , Pneumonia , Humanos , SARS-CoV-2 , Pulmão/diagnóstico por imagem , Software
7.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046592

RESUMO

BACKGROUND: This study tested the diagnostic value of 18F-FDG PET/CT (FDG-PET) volumetric and texture parameters in the histological differentiation of mediastinal bulky disease due to classical Hodgkin lymphoma (cHL), primary mediastinal B-cell lymphoma (PMBCL) and grey zone lymphoma (GZL), using machine learning techniques. METHODS: We reviewed 80 cHL, 29 PMBCL and 8 GZL adult patients with mediastinal bulky disease and histopathological diagnoses who underwent FDG-PET pre-treatment. Volumetric and radiomic parameters were measured using FDG-PET both for bulky lesions (BL) and for all lesions (AL) using LIFEx software (threshold SUV ≥ 2.5). Binary and multiclass classifications were performed with various machine learning techniques fed by a relevant subset of radiomic features. RESULTS: The analysis showed significant differences between the lymphoma groups in terms of SUVmax, SUVmean, MTV, TLG and several textural features of both first- and second-order grey level. Among machine learning classifiers, the tree-based ensembles achieved the best performance both for binary and multiclass classifications in histological differentiation. CONCLUSIONS: Our results support the value of metabolic heterogeneity as an imaging biomarker, and the use of radiomic features for early characterization of mediastinal bulky lymphoma.

8.
Phys Med ; 107: 102538, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36796177

RESUMO

PURPOSE: Analysis pipelines based on the computation of radiomic features on medical images are widely used exploration tools across a large variety of image modalities. This study aims to define a robust processing pipeline based on Radiomics and Machine Learning (ML) to analyze multiparametric Magnetic Resonance Imaging (MRI) data to discriminate between high-grade (HGG) and low-grade (LGG) gliomas. METHODS: The dataset consists of 158 multiparametric MRI of patients with brain tumor publicly available on The Cancer Imaging Archive, preprocessed by the BraTS organization committee. Three different types of image intensity normalization algorithms were applied and 107 features were extracted for each tumor region, setting the intensity values according to different discretization levels. The predictive power of radiomic features in the LGG versus HGG categorization was evaluated by using random forest classifiers. The impact of the normalization techniques and of the different settings in the image discretization was studied in terms of the classification performances. A set of MRI-reliable features was defined selecting the features extracted according to the most appropriate normalization and discretization settings. RESULTS: The results show that using MRI-reliable features improves the performance in glioma grade classification (AUC=0.93±0.05) with respect to the use of raw (AUC=0.88±0.08) and robust features (AUC=0.83±0.08), defined as those not depending on image normalization and intensity discretization. CONCLUSIONS: These results confirm that image normalization and intensity discretization strongly impact the performance of ML classifiers based on radiomic features. Thus, special attention should be provided in the image preprocessing step before typical radiomic and ML analysis are carried out.


Assuntos
Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Glioma/diagnóstico por imagem , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
9.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430780

RESUMO

Trabectedin is used for the treatment of advanced soft tissue sarcomas (STSs). In this study, we evaluated if trabectedin could enhance the efficacy of irradiation (IR) by increasing the intrinsic cell radiosensitivity and modulating tumor micro-environment in fibrosarcoma (HS 93.T), leiomyosarcoma (HS5.T), liposarcoma (SW872), and rhabdomyosarcoma (RD) cell lines. A significant reduction in cell surviving fraction (SF) following trabectedin + IR compared to IR alone was observed in liposarcoma and leiomyosarcoma (enhancement ratio at 50%, ER50: 1.45 and 2.35, respectively), whereas an additive effect was shown in rhabdomyosarcoma and fibrosarcoma. Invasive cells' fraction significantly decreased following trabectedin ± IR compared to IR alone. Differences in cell cycle distribution were observed in leiomyosarcoma and rhabdomyosarcoma treated with trabectedin + IR. In all STS lines, trabectedin + IR resulted in a significantly higher number of γ-H2AX (histone H2AX) foci 30 min compared to the control, trabectedin, or IR alone. Expression of ATM, RAD50, Ang-2, VEGF, and PD-L1 was not significantly altered following trabectedin + IR. In conclusion, trabectedin radiosensitizes STS cells by affecting SF (particularly in leiomyosarcoma and liposarcoma), invasiveness, cell cycle distribution, and γ-H2AX foci formation. Conversely, no synergistic effect was observed on DNA damage repair, neoangiogenesis, and immune system.


Assuntos
Fibrossarcoma , Leiomiossarcoma , Lipossarcoma , Radiossensibilizantes , Rabdomiossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Trabectedina/farmacologia , Trabectedina/uso terapêutico , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Leiomiossarcoma/tratamento farmacológico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Lipossarcoma/tratamento farmacológico , Microambiente Tumoral
10.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36234601

RESUMO

In this paper, by means of high-resolution photoemission, soft X-ray absorption and atomic force microscopy, we investigate, for the first time, the mechanisms of damaging, induced by neutron source, and recovering (after annealing) of p-i-n detector devices based on hydrogenated amorphous silicon (a-Si:H). This investigation will be performed by mean of high-resolution photoemission, soft X-Ray absorption and atomic force microscopy. Due to dangling bonds, the amorphous silicon is a highly defective material. However, by hydrogenation it is possible to reduce the density of the defect by several orders of magnitude, using hydrogenation and this will allow its usage in radiation detector devices. The investigation of the damage induced by exposure to high energy irradiation and its microscopic origin is fundamental since the amount of defects determine the electronic properties of the a-Si:H. The comparison of the spectroscopic results on bare and irradiated samples shows an increased degree of disorder and a strong reduction of the Si-H bonds after irradiation. After annealing we observe a partial recovering of the Si-H bonds, reducing the disorder in the Si (possibly due to the lowering of the radiation-induced dangling bonds). Moreover, effects in the uppermost coating are also observed by spectroscopies.

11.
Phys Med ; 102: 73-78, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36126470

RESUMO

PURPOSE: Small photon beams used in radiotherapy techniques have inherent characteristics of charge particle disequilibrium and high-dose gradient making accurate dosimetry for such fields very challenging. By means of a 3D manufacturing technique, it is possible to create arrays of pixels with a very small sensitive volume for radiotherapy dosimetry. We investigate the impact of 3D pixels size on absorbed dose sensitivity, linearity of response with dose rate, reproducibility and beam profile measurements. METHODS: Diamond detectors with different pixel sizes have been produced in the 3DOSE experiment framework. To investigate the pixels size impact, they were tested using an Elekta Synergy LINAC. Dose rate dependence, absorbed dose sensitivity, reproducibility and beam profile measurement accuracy have been investigated and compared with PTW 60019 and IBA SFD reference dosimeters. RESULTS: All of the 3D pixels had a linear and reproducible response to the dose rate. The sensitivity of a pixel decreases with its size, although even the smallest pixel has a high absorbed dose sensitivity (15 nC/Gy). The penumbra width measured with the smallest pixel size was consistent with the PTW microDiamond and differed by 0.2 mm from the IBA SFD diode. CONCLUSIONS: The study demonstrates that variation in pixel size do not affect the linearity of response with dose rate and the reproducibility of response. Due to the 3D geometry, the absorbed dose sensitivity of the detector remains high even for the smallest pixel, furthermore the pixel size was demonstrated to be of fundamental importance in the measurement of beam profiles.


Assuntos
Diamante , Radiometria , Aceleradores de Partículas , Fótons/uso terapêutico , Dosímetros de Radiação , Radiometria/métodos , Reprodutibilidade dos Testes
12.
Phys Med Biol ; 67(16)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35785778

RESUMO

This topical review focuses on the applications of artificial intelligence (AI) tools to stereotactic body radiation therapy (SBRT). The high dose per fraction and the limited number of fractions in SBRT require stricter accuracy than standard radiation therapy. The intent of this review is to describe the development and evaluate the possible benefit of AI tools integration into the radiation oncology workflow for SBRT automation. The selected papers were subdivided into four sections, representative of the whole radiotherapy process: 'AI in SBRT target and organs at risk contouring', 'AI in SBRT planning', 'AI during the SBRT delivery', and 'AI for outcome prediction after SBRT'. Each section summarises the challenges, as well as limits and needs for improvement to achieve better integration of AI tools in the clinical workflow.


Assuntos
Radiocirurgia , Inteligência Artificial , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
13.
Z Med Phys ; 32(4): 392-402, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35370027

RESUMO

The aim of this study is to investigate the feasibility of manufacturing thin real-time relative dosimeters for clinical radiotherapy (RT) with potential applications for transmission monitoring in vivo dosimetry and pre-treatment dose verifications. Thin (≈1µm) layers of a high sensitivity, wide bandgap semiconductor, the inorganic perovskite CsPbCl3, have been grown for the first time by magnetron sputtering on plastic substrates equipped with electrode arrays. Prototype devices have been tested in real-time configuration to evaluate the dose delivered by a 6MV photon beam from a linear accelerator. Linearity of the charge with the dose has been verified over three order of magnitudes, linearity of the current signal with the dose rate has been also successfully tested in the range 0.5-4.3Gy/min. The combination of high sensitivity per unit volume and wide bandgap provides high signal-to-noise ratios, up to 70, even at moderate applied voltages. The Schottky diode configuration allows the detector to operate without bias voltage (null bias).The blocking-barrier structure allows to confine the active volume within sub-millimetric sizes, a quite attractive feature in view to increase granularity and achieve the high spatial resolutions required in modern RT techniques. All the above-mentioned features indeed pave the way to a novel generation of flexible, transmission, real time dosimeters for clinical radiotherapy.


Assuntos
Aceleradores de Partículas , Dosímetros de Radiação , Radiometria/métodos
14.
Int J Comput Assist Radiol Surg ; 17(2): 229-237, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34698988

RESUMO

PURPOSE: This study aims at exploiting artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions. The limited data availability and the annotation quality are relevant factors in training AI-methods. We investigated the effects of using multiple datasets, heterogeneously populated and annotated according to different criteria. METHODS: We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets. The first one (U-net[Formula: see text]) is devoted to the identification of the lung parenchyma; the second one (U-net[Formula: see text]) acts on a bounding box enclosing the segmented lungs to identify the areas affected by COVID-19 lesions. Different public datasets were used to train the U-nets and to evaluate their segmentation performances, which have been quantified in terms of the Dice Similarity Coefficients. The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated. RESULTS: Both the volumetric DSC (vDSC) and the accuracy showed a dependency on the annotation quality of the released data samples. On an independent dataset (COVID-19-CT-Seg), both the vDSC and the surface DSC (sDSC) were measured between the masks predicted by LungQuant system and the reference ones. The vDSC (sDSC) values of 0.95±0.01 and 0.66±0.13 (0.95±0.02 and 0.76±0.18, with 5 mm tolerance) were obtained for the segmentation of lungs and COVID-19 lesions, respectively. The system achieved an accuracy of 90% in CT-SS identification on this benchmark dataset. CONCLUSION: We analysed the impact of using data samples with different annotation criteria in training an AI-based quantification system for pulmonary involvement in COVID-19 pneumonia. In terms of vDSC measures, the U-net segmentation strongly depends on the quality of the lesion annotations. Nevertheless, the CT-SS can be accurately predicted on independent test sets, demonstrating the satisfactory generalization ability of the LungQuant.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , Pulmão/diagnóstico por imagem , SARS-CoV-2 , Tórax
15.
Phys Med ; 91: 140-150, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34801873

RESUMO

Artificial Intelligence (AI) techniques have been implemented in the field of Medical Imaging for more than forty years. Medical Physicists, Clinicians and Computer Scientists have been collaborating since the beginning to realize software solutions to enhance the informative content of medical images, including AI-based support systems for image interpretation. Despite the recent massive progress in this field due to the current emphasis on Radiomics, Machine Learning and Deep Learning, there are still some barriers to overcome before these tools are fully integrated into the clinical workflows to finally enable a precision medicine approach to patients' care. Nowadays, as Medical Imaging has entered the Big Data era, innovative solutions to efficiently deal with huge amounts of data and to exploit large and distributed computing resources are urgently needed. In the framework of a collaboration agreement between the Italian Association of Medical Physicists (AIFM) and the National Institute for Nuclear Physics (INFN), we propose a model of an intensive computing infrastructure, especially suited for training AI models, equipped with secure storage systems, compliant with data protection regulation, which will accelerate the development and extensive validation of AI-based solutions in the Medical Imaging field of research. This solution can be developed and made operational by Physicists and Computer Scientists working on complementary fields of research in Physics, such as High Energy Physics and Medical Physics, who have all the necessary skills to tailor the AI-technology to the needs of the Medical Imaging community and to shorten the pathway towards the clinical applicability of AI-based decision support systems.


Assuntos
Inteligência Artificial , Computação em Nuvem , Humanos , Itália , Física Nuclear , Medicina de Precisão
16.
J Appl Clin Med Phys ; 22(4): 52-62, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33735491

RESUMO

PURPOSE: Patient-specific quality assurance (QA) is very important in radiotherapy, especially for patients with highly conformed treatment plans like VMAT plans. Traditional QA protocols for these plans are time-consuming reducing considerably the time available for patient treatments. In this work, a new MC-based secondary dose check software (SciMoCa) is evaluated and benchmarked against well-established TPS (Monaco and Pinnacle3 ) by means of treatment plans and dose measurements. METHODS: Fifty VMAT plans have been computed using same calculation parameters with SciMoCa and the two primary TPSs. Plans were validated with measurements performed with a 3D diode detector (ArcCHECK) by translating patient plans to phantom geometry. Calculation accuracy was assessed by measuring point dose differences and gamma passing rates (GPR) from a 3D gamma analysis with 3%-2 mm criteria. Comparison between SciMoCa and primary TPS calculations was made using the same estimators and using both patient and phantom geometry plans. RESULTS: TPS and SciMoCa calculations were found to be in very good agreement with validation measurements with average point dose differences of 0.7 ± 1.7% and -0.2 ± 1.6% for SciMoCa and two TPSs, respectively. Comparison between SciMoCa calculations and the two primary TPS plans did not show any statistically significant difference with average point dose differences compatible with zero within error for both patient and phantom geometry plans and GPR (98.0 ± 3.0% and 99.0 ± 3.0% respectively) well in excess of the typical 95 % clinical tolerance threshold. CONCLUSION: This work presents results obtained with a significantly larger sample than other similar analyses and, to the authors' knowledge, compares SciMoCa with a MC-based TPS for the first time. Results show that a MC-based secondary patient-specific QA is a clinically viable, reliable, and promising technique, that potentially allows significant time saving that can be used for patient treatment and a per-plan basis QA that effectively complements traditional commissioning and calibration protocols.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Algoritmos , Humanos , Mônaco , Método de Monte Carlo , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica
17.
Br J Radiol ; 94(1119): 20201354, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481637

RESUMO

OBJECTIVES: This multicentric study was carried out to investigate the impact of small field output factors (OFs) inaccuracies on the calculated dose in volumetric arctherapy (VMAT) radiosurgery brain plans. METHODS: Nine centres, realised the same five VMAT plans with common planning rules and their specific clinical equipment Linac/treatment planning system commissioned with their OFs measured values (OFbaseline). In order to simulate OFs errors, two new OFs sets were generated for each centre by changing only the OFs values of the smallest field sizes (from 3.2 × 3.2 cm2 to 1 × 1 cm2) with well-defined amounts (positive and negative). Consequently, two virtual machines for each centre were recommissioned using the new OFs and the percentage dose differences ΔD (%) between the baseline plans and the same plans recalculated using the incremented (OFup) and decremented (OFdown) values were evaluated. The ΔD (%) were analysed in terms of planning target volume (PTV) coverage and organs at risk (OARs) sparing at selected dose/volume points. RESULTS: The plans recalculated with OFdown sets resulted in higher variation of doses than baseline within 1.6 and 3.4% to PTVs and OARs respectively; while the plans with OFup sets resulted in lower variation within 1.3% to both PTVs and OARs. Our analysis highlights that OFs variations affect calculated dose depending on the algorithm and on the delivery mode (field jaw/MLC-defined). The Monte Carlo (MC) algorithm resulted significantly more sensitive to OFs variations than all of the other algorithms. CONCLUSION: The aim of our study was to evaluate how small fields OFs inaccuracies can affect the dose calculation in VMAT brain radiosurgery treatments plans. It was observed that simulated OFs errors, return dosimetric calculation accuracies within the 3% between concurrent plans analysed in terms of percentage dose differences at selected dose/volume points of the PTV coverage and OARs sparing. ADVANCES IN KNOWLEDGE: First multicentre study involving different Planning/Linacs about undetectable errors in commissioning output factor for small fields.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Incerteza
19.
Radiother Oncol ; 149: 158-167, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32416282

RESUMO

Stereotactic body radiation therapy (SBRT) has been recognized as a standard treatment option for many anatomical sites. Sophisticated radiation therapy techniques have been developed for carrying out these treatments and new quality assurance (QA) programs are therefore required to guarantee high geometrical and dosimetric accuracy. This paper focuses on recent advances on in-vivo measurements methods (IVM) for SBRT treatment. More specifically, all of the online QA methods for estimating the effective dose delivered to patients were compared. Determining the optimal IVM for performing SBRT treatments would reduce the risk of errors that could jeopardize treatment outcome. A total of 89 papers were included. The papers were subdivided into the following topics: point dosimeters (PD), transmission detectors (TD), log file analysis (LFA), electronic portal imaging device dosimetry (EPID), dose accumulation methods (DAM). The detectability capability of the main IVM detectors/devices were evaluated. All of the systems have some limitations: PD has no spatial data, EPID has limited sensitivity towards set-up errors and intra-fraction motion in some anatomical sites, TD is insensitive towards patient related errors, LFA is not an independent measure, DAMs are not always based on measures. In order to minimize errors in SBRT dose delivery, we recommend using synergic combinations of two or more of the systems described in our review: on-line tumor position and patient information should be combined with MLC position and linac output detection accuracy. In this way the effects of SBRT dose delivery errors will be reduced.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
20.
J Appl Clin Med Phys ; 21(6): 114-120, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32275353

RESUMO

PURPOSE: To develop and validate a robust template for VMAT SBRT of lung lesions, using the multicriterial optimization (MCO) of a commercial treatment planning system. METHODS: The template was established and refined on 10 lung SBRT patients planned for 55 Gy/5 fr. To improve gradient and conformity a ring structure around the planning target volume (PTV) was set in the list of objectives. Ideal fluence optimization was conducted giving priority to organs at risk (OARs) and using the MCO, which further pushes OARs doses. Segmentation was conducted giving priority to PTV coverage. Two different templates were produced with different degrees of modulation, by setting the Fluence Smoothing parameter to Medium (MFS) and High (HFS). Each template was applied on 20 further patients. Automatic and manual plans were compared in terms of dosimetric parameters, delivery time, and complexity. Statistical significance of differences was evaluated using paired two-sided Wilcoxon signed-rank test. RESULTS: No statistically significant differences in PTV coverage and maximum dose were observed, while an improvement was observed in gradient and conformity. A general improvement in dose to OARs was seen, which resulted to be significant for chest wall V30 Gy , total lung V20 Gy , and spinal cord D0.1 cc . MFS plans are characterized by a higher modulation and longer delivery time than manual plans. HFS plans have a modulation and a delivery time comparable to manual plans, but still present an advantage in terms of gradient. CONCLUSION: The automation of the planning process for lung SBRT using robust templates and MCO was demonstrated to be feasible and more efficient.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Masculino , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...