Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 358: 129817, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940302

RESUMO

In this paper, a green and inexpensive air-assisted natural deep eutectic solvent-based solidified homogeneous liquid phase microextraction procedure was optimized for extraction of patulin in fruit juice and dried fruit samples using experimental design prior to its spectrophotometric determination. Four different natural deep eutectic solvent were prepared and applied to ensure efficient, and selective extraction of patulin. The significant variables including Zn(II) amount, cooling time, pH and amount of natural deep eutectic solvent were optimized by using central composite design. Under optimized conditions, working range was 10-750 µg L-1 with 0.9996 of correlation coefficient. Detection limit and preconcentration factor were 3.5 µg L-1 and 150, respectively. The repeatability and reproducibility precision were in the range of 3.2-4.6% and 4.3-5.6% respectively. Recoveries ranging from 94% to 104% proved the accuracy of the method. The optimized method was successfully applied to the extraction and identification of patulin in the selected samples.


Assuntos
Sucos de Frutas e Vegetais , Frutas/química , Microextração em Fase Líquida/métodos , Patulina/isolamento & purificação , Química Computacional , Química Verde , Concentração de Íons de Hidrogênio , Limite de Detecção , Reprodutibilidade dos Testes , Projetos de Pesquisa , Solventes/química , Espectrofotometria Ultravioleta , Fatores de Tempo
2.
Biotechnol Biofuels ; 12: 233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31583019

RESUMO

BACKGROUND: Bio-based production of organic acids promises to be an attractive alternative for the chemicals industry to substitute petrochemicals as building-block chemicals. In recent years, itaconic acid (IA, methylenesuccinic acid) has been established as a sustainable building-block chemical for the manufacture of various products such as synthetic resins, coatings, and biofuels. The natural IA producer Aspergillus terreus is currently used for industrial IA production; however, the filamentous fungus Aspergillus niger has been suggested to be a more suitable host for this purpose. In our previous report, we communicated the overexpression of a putative cytosolic citrate synthase citB in an A. niger strain carrying the full IA biosynthesis gene cluster from A. terreus, which resulted in the highest final titer reported for A. niger (26.2 g/L IA). In this research, we have attempted to improve this pathway by increasing the cytosolic acetyl-CoA pool. Additionally, we have also performed fermentation optimization by varying the nitrogen source and concentration. RESULTS: To increase the cytosolic acetyl-CoA pool, we have overexpressed genes acl1 and acl2 that together encode for ATP-citrate lyase (ACL). Metabolic engineering of ACL resulted in improved IA production through an apparent increase in glycolytic flux. Strains that overexpress acl12 show an increased yield, titer and productivity in comparison with parental strain CitB#99. Furthermore, IA fermentation conditions were improved by nitrogen supplementation, which resulted in alkalization of the medium and thereby reducing IA-induced weak-acid stress. In turn, the alkalizing effect of nitrogen supplementation enabled an elongated idiophase and allowed final titers up to 42.7 g/L to be reached at a productivity of 0.18 g/L/h and yield of 0.26 g/g in 10-L bioreactors. CONCLUSION: Ultimately, this study shows that metabolic engineering of ACL in our rewired IA biosynthesis pathway leads to improved IA production in A. niger due to an increase in glycolytic flux. Furthermore, IA fermentation conditions were improved by nitrogen supplementation that alleviates IA induced weak-acid stress and extends the idiophase.

3.
Enzyme Microb Technol ; 48(3): 209-16, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22112902

RESUMO

The influence of methanol feeding rate on intracellular reaction network of recombinant human growth hormone (rhGH) producing Pichia pastoris was investigated at three different specific growth rates, namely, 0.02 (MS-0.02), 0.03 (MS-0.03), and 0.04 h(-1) (MS-0.04) where Period-I (33 ≤ t <42 h) includes the early exponential growth phase; Period-II (42 ≤ t<48 h) is the exponential growth phase where the specific cell growth rate decreases; Period-III (48 ≤ t ≤51 h) is the exponential growth phase where rhGH concentration was the highest; and Period-IV (t>51 h) is the diminution phase for rhGH and cell synthesis. In Period-I, almost all of the formaldehyde entered the assimilatory pathway, at MS-0.02 and MS-0.03, whereas, at MS-0.04 high methanol feeding rate resulted in an adaptation problem. In Period-III, only at MS-0.02 co-carbon source sorbitol uptake-flux was active showing that sorbitol uptake does not affected from the predetermined feeding rate of methanol at µ(0)>0.02 h(-1). The biomass synthesis flux value was the highest in Period-I, -II and -III, respectively at MS-0.03 & MS-0.04, MS-0.04 and MS-0.02; whereas, rhGH flux was the highest in Period-I, -II, and -III, respectively at MS-0.03, MS-0.02 and MS-0.03. Based on the fluxes, Period-I should start with MS-0.03 methanol feeding rate and starting from the middle of Period-II methanol feeding rate should be shifted to MS-0.02.


Assuntos
Hormônio do Crescimento Humano/biossíntese , Metanol/metabolismo , Pichia/metabolismo , Biomassa , Reatores Biológicos , Biotecnologia/métodos , Indústria Farmacêutica , Fermentação , Humanos , Pichia/crescimento & desenvolvimento , Proteínas Recombinantes/biossíntese , Sorbitol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...