Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Microbes Infect ; : 105385, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950642

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas' disease, can infect both phagocytic and non-phagocytic cells. T. cruzi gp82 and gp90 are cell surface proteins belonging to Group II trans-sialidases known to be involved in host cell binding and invasion. Phosphatidylinositol kinases (PIK) are lipid kinases that phosphorylate phospholipids in their substrates or in themselves, regulating important cellular functions such as metabolism, cell cycle and survival. Vps34, a class III PIK, regulates autophagy, trimeric G-protein signaling, and the mTOR (mammalian Target of Rapamycin) nutrient-sensing pathway. The mammalian autophagy gene Beclin1 interacts to Vps34 forming Beclin 1-Vps34 complexes involved in autophagy and protein sorting. In T. cruzi epimastigotes, (a non-infective replicative form), TcVps34 has been related to morphological and functional changes associated to vesicular trafficking, osmoregulation and receptor-mediated endocytosis. We aimed to characterize the role of TcVps34 during invasion of HeLa cells by metacyclic (MT) forms. MTs overexpressing TcVps34 showed lower invasion rates compared to controls, whilst exhibiting a significant decrease in gp82 expression in the parasite surface. In addition, we showed that T. cruzi Beclin (TcBeclin1) colocalizes with TcVps34 in epimastigotes, thus suggesting the formation of complexes that may play conserved cellular roles already described for other eukaryotes.

2.
iScience ; 27(7): 110177, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38993669

RESUMO

Despite successful vaccines and updates, constant mutations of SARS-CoV-2 makes necessary the search for new vaccines. We generated a chimeric protein that comprises the receptor-binding domain from spike and the nucleocapsid antigens (SpiN) from SARS-CoV-2. Once SpiN elicits a protective immune response in rodents, here we show that convalescent and previously vaccinated individuals respond to SpiN. CD4+ and CD8+ T cells from these individuals produced greater amounts of IFN-γ when stimulated with SpiN, compared to SARS-CoV-2 antigens. Also, B cells from these individuals were able to secrete antibodies that recognize SpiN. When administered as a boost dose in mice previously immunized with CoronaVac, ChAdOx1-S or BNT162b2, SpiN was able to induce a greater or equivalent immune response to homologous prime/boost. Our data reveal the ability of SpiN to induce cellular and humoral responses in vaccinated human donors, rendering it a promising candidate.

3.
Microorganisms ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37894080

RESUMO

SARS-CoV-2 diagnostic tests have become an important tool for pandemic control. Among the alternatives for COVID-19 diagnosis, antigen rapid diagnostic tests (Ag-RDT) are very convenient and widely used. However, as SARS-CoV-2 variants may continuously emerge, the replacement of tests and reagents may be required to maintain the sensitivity of Ag-RDTs. Here, we describe the development and validation of an Ag-RDT during an outbreak of the Omicron variant, including the characterization of a new monoclonal antibody (anti-DTC-N 1B3 mAb) that recognizes the Nucleocapsid protein (N). The anti-DTC-N 1B3 mAb recognized the sequence TFPPTEPKKDKKK located at the C-terminus of the N protein of main SARS-CoV-2 variants of concern. Accordingly, the Ag-RDT prototypes using the anti-DTC-N 1B3 mAB detected all the SARS-CoV-2 variants-Wuhan, Alpha, Gamma, Delta, P2 and Omicron. The performance of the best prototype (sensitivity of 95.2% for samples with Ct ≤ 25; specificity of 98.3% and overall accuracy of 85.0%) met the WHO recommendations. Moreover, results from a patients' follow-up study indicated that, if performed within the first three days after onset of symptoms, the Ag-RDT displayed 100% sensitivity. Thus, the new mAb and the Ag-RDT developed herein may constitute alternative tools for COVID-19 point-of-care diagnosis and epidemiological surveillance.

4.
PLoS Negl Trop Dis ; 17(9): e0011646, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729272

RESUMO

Sphingolipids (SLs) are essential components of all eukaryotic cellular membranes. In fungi, plants and many protozoa, the primary SL is inositol-phosphorylceramide (IPC). Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD), a chronic illness for which no vaccines or effective treatments are available. IPC synthase (IPCS) has been considered an ideal target enzyme for drug development because phosphoinositol-containing SL is absent in mammalian cells and the enzyme activity has been described in all parasite forms of T. cruzi. Furthermore, IPCS is an integral membrane protein conserved amongst other kinetoplastids, including Leishmania major, for which specific inhibitors have been identified. Using a CRISPR-Cas9 protocol, we generated T. cruzi knockout (KO) mutants in which both alleles of the IPCS gene were disrupted. We demonstrated that the lack of IPCS activity does not affect epimastigote proliferation or its susceptibility to compounds that have been identified as inhibitors of the L. major IPCS. However, disruption of the T. cruzi IPCS gene negatively affected epimastigote differentiation into metacyclic trypomastigotes as well as proliferation of intracellular amastigotes and differentiation of amastigotes into tissue culture-derived trypomastigotes. In accordance with previous studies suggesting that IPC is a membrane component essential for parasite survival in the mammalian host, we showed that T. cruzi IPCS null mutants are unable to establish an infection in vivo, even in immune deficient mice.


Assuntos
Doença de Chagas , Leishmania major , Trypanosoma cruzi , Camundongos , Animais , Leishmania major/genética , Diferenciação Celular , Inositol/metabolismo , Inositol/farmacologia , Mamíferos
5.
Nanomedicine (Lond) ; 18(18): 1175-1194, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37712604

RESUMO

Aim: To develop, characterize and evaluate an oil/water nanoemulsion with squalene (CTVad1) to be approved as an adjuvant for the SpiN COVID-19 vaccine clinical trials. Materials & methods: Critical process parameters (CPPs) of CTVad1 were standardized to meet the critical quality attributes (CQAs) of an adjuvant for human use. CTVad1 and the SpiN-CTVad1 vaccine were submitted to physicochemical, stability, in vitro and in vivo studies. Results & conclusion: All CQAs were met in the CTVad1 production process. SpiN- CTVad1 met CQAs and induced high levels of antibodies and specific cellular responses in in vivo studies. These results represented a critical step in the process developed to meet regulatory requirements for the SpiN COVID-19 vaccine clinical trial.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19/uso terapêutico , Emulsões/química , COVID-19/prevenção & controle , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Imunológicos/química , Vacinas/química
6.
Einstein (Sao Paulo) ; 21: eAE0115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37436266

RESUMO

This study proposes a strategy for large-scale testing among a large number of people for the early diagnosis of COVID-19 to elucidate the epidemiological situation. Pool testing involves the analysis of pooled samples. This study aimed to discuss a reverse transcription technique followed by quantitative real-time polymerase chain reaction using pool testing to detect SARS-CoV-2 in nasopharyngeal swab samples. The study proposes an innovative diagnostic strategy that contributes to resource optimization, cost reduction, and improved agility of feedback from results. Pool testing is simultaneously performed on multiple samples to efficiently and cost-effectively detect COVID-19. Pool testing can optimize resource utilization and expand diagnostic access, and is a viable alternative for developing countries with limited access to testing. To optimize resources, the pool size was determined by estimating COVID-19 prevalence in the study population.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
7.
Adv Exp Med Biol ; 1429: 111-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486519

RESUMO

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is an illness that affects 6-8 million people worldwide and is responsible for approximately 50,000 deaths per year. Despite intense research efforts on Chagas disease and its causative agent, there is still a lack of effective treatments or strategies for disease control. Although significant progress has been made toward the elucidation of molecular mechanisms involved in host-parasite interactions, particularly immune evasion mechanisms, a deeper understanding of these processes has been hindered by a lack of efficient genetic manipulation protocols. One major challenge is the fact that several parasite virulence factors are encoded by multigene families, which constitute a distinctive feature of the T. cruzi genome. The recent advent of the CRISPR/Cas9 technology represented an enormous breakthrough in the studies involving T. cruzi genetic manipulation compared to previous protocols that are poorly efficient and required a long generation time to develop parasite mutants. Since the first publication of CRISPR gene editing in T. cruzi, in 2014, different groups have used distinct protocols to generated knockout mutants, parasites overexpressing a protein or expressing proteins with sequence tags inserted in the endogenous gene. Importantly, CRISPR gene editing allowed generation of parasite mutants with gene disruption in multi-copy gene families. We described four main strategies used to edit the T. cruzi genome and summarized a large list of studies performed by different groups in the past 7 years that are addressing several mechanisms involved with parasite proliferation, differentiation, and survival strategies within its different hosts.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Doença de Chagas/genética , Doença de Chagas/parasitologia , Trypanosoma cruzi/genética
8.
Genomics ; 115(5): 110661, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263313

RESUMO

We report the sequencing and assembly of the PH8 strain of Leishmania amazonensis one of the etiological agents of leishmaniasis. After combining data from long Pacbio reads, short Illumina reads and synteny with the Leishmania mexicana genome, the sequence of 34 chromosomes with 8317 annotated genes was generated. Multigene families encoding three virulence factors, A2, amastins and the GP63 metalloproteases, were identified and compared to their annotation in other Leishmania species. As they have been recently recognized as virulence factors essential for disease establishment and progression of the infection, we also identified 14 genes encoding proteins involved in parasite iron and heme metabolism and compared to genes from other Trypanosomatids. To follow these studies with a genetic approach to address the role of virulence factors, we tested two CRISPR-Cas9 protocols to generate L. amazonensis knockout cell lines, using the Miltefosine transporter gene as a proof of concept.


Assuntos
Leishmania mexicana , Leishmania , Leishmania mexicana/genética , Virulência/genética , Leishmania/genética , Genoma , Fatores de Virulência/metabolismo
9.
J Biol Chem ; 299(7): 104857, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230387

RESUMO

The TcK2 protein kinase of Trypanosoma cruzi, the causative agent of Chagas disease, is structurally similar to the human kinase PERK, which phosphorylates the initiation factor eIF2α and, in turn, inhibits translation initiation. We have previously shown that absence of TcK2 kinase impairs parasite proliferation within mammalian cells, positioning it as a potential target for treatment of Chagas disease. To better understand its role in the parasite, here we initially confirmed the importance of TcK2 in parasite proliferation by generating CRISPR/Cas9 TcK2-null cells, albeit they more efficiently differentiate into infective forms. Proteomics indicates that the TcK2 knockout of proliferative forms expresses proteins including trans-sialidases, normally restricted to infective and nonproliferative trypomastigotes explaining decreased proliferation and better differentiation. TcK2 knockout cells lost phosphorylation of eukaryotic initiation factor 3 and cyclic AMP responsive-like element, recognized to promote growth, likely explaining both decreased proliferation and augmented differentiation. To identify specific inhibitors, a library of 379 kinase inhibitors was screened by differential scanning fluorimetry using a recombinant TcK2 encompassing the kinase domain and selected molecules were tested for kinase inhibition. Only Dasatinib and PF-477736, inhibitors of Src/Abl and ChK1 kinases, showed inhibitory activity with IC50 of 0.2 ± 0.02 mM and 0.8 ± 0.1, respectively. In infected cells Dasatinib inhibited growth of parental amastigotes (IC50 = 0.6 ± 0.2 mM) but not TcK2 of depleted parasites (IC50 > 34 mM) identifying Dasatinib as a potential lead for development of therapeutics for Chagas disease targeting TcK2.


Assuntos
Doença de Chagas , Parasitos , Trypanosoma cruzi , Animais , Humanos , Trypanosoma cruzi/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Dasatinibe , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Proliferação de Células , Mamíferos/metabolismo
10.
NPJ Vaccines ; 8(1): 81, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258518

RESUMO

Immunization with the Amastigote Surface Protein-2 (ASP-2) and Trans-sialidase (TS) antigens either in the form of recombinant protein, encoded in plasmids or human adenovirus 5 (hAd5) confers robust protection against various lineages of Trypanosoma cruzi. Herein we generated a chimeric protein containing the most immunogenic regions for T and B cells from TS and ASP-2 (TRASP) and evaluated its immunogenicity in comparison with our standard protocol of heterologous prime-boost using plasmids and hAd5. Mice immunized with TRASP protein associated to Poly-ICLC (Hiltonol) were highly resistant to challenge with T. cruzi, showing a large decrease in tissue parasitism, parasitemia and no lethality. This protection lasted for at least 3 months after the last boost of immunization, being equivalent to the protection induced by DNA/hAd5 protocol. TRASP induced high levels of T. cruzi-specific antibodies and IFNγ-producing T cells and protection was primarily mediated by CD8+ T cells and IFN-γ. We also evaluated the toxicity, immunogenicity, and efficacy of TRASP and DNA/hAd5 formulations in dogs. Mild collateral effects were detected at the site of vaccine inoculation. While the chimeric protein associated with Poly-ICLC induced high levels of antibodies and CD4+ T cell responses, the DNA/hAd5 induced no antibodies, but a strong CD8+ T cell response. Immunization with either vaccine protected dogs against challenge with T. cruzi. Despite the similar efficacy, we conclude that moving ahead with TRASP together with Hiltonol is advantageous over the DNA/hAd5 vaccine due to pre-existing immunity to the adenovirus vector, as well as the cost-benefit for development and large-scale production.

11.
Exp Biol Med (Maywood) ; 248(10): 874-882, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36941802

RESUMO

The duration and protectiveness of antibodies against SARS-CoV-2 in infected subjects are still uncertain; nonetheless, anti-S-specific antibodies can contribute to protective immunity against new infections. It has been described that the level of antibodies produced in COVID-19 is related to the severity of symptoms, and the majority of the humoral response studies have been conducted in hospitalized patients who have been, then, followed over time. However, about 80% of SARS-CoV-2 infections in unvaccinated people are mild to asymptomatic, and this percentage reaches more than 95% in vaccinated individuals. Therefore, understanding the long-term dynamics of the antibody responses in this predominant part of the COVID-19-affected population is essential. In this study, we followed a cohort of individuals with mild COVID-19 who did not require hospitalization. We collected blood samples at sequential times after the SARS-CoV-2-positive qRT-PCR result. From 65 recruited patients, 50 had detectable antibodies at screening. Anti-SARS-CoV-2 IgM levels peaked around two weeks post-COVID-19 diagnostics, becoming undetectable after 65 days. IgG levels reached a peak in approximately one month and remained detectable for more than one year. In contrast to the levels of anti-SARS-CoV-2, antibody neutralization potency indexes persisted over time. In this study, humoral responses in mild COVID-19 patients persisted for more than one year. This is an important long-term follow-up study that includes responses from COVID-19 patients before and after vaccination, a scenery that has become increasingly difficult to evaluate due to the growing vaccination of the world human population.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Seguimentos , Estudos Longitudinais , Imunoglobulina M , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunidade Humoral
12.
NPJ Vaccines ; 8(1): 15, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781862

RESUMO

The current COVID-19 vaccines protect against severe disease, but are not effective in controlling replication of the Variants of Concern (VOCs). Here, we used the existing pre-clinical models of severe and moderate COVID-19 to evaluate the efficacy of a Spike-based DNA vaccine (pCTV-WS) for protection against different VOCs. Immunization of transgenic (K18-hACE2) mice and hamsters induced significant levels of neutralizing antibodies (nAbs) to Wuhan and Delta isolates, but not to the Gamma and Omicron variants. Nevertheless, the pCTV-WS vaccine offered significant protection to all VOCs. Consistently, protection against lung pathology and viral load to Wuhan or Delta was mediated by nAbs, whereas in the absence of nAbs, T cells controlled viral replication, disease and lethality in mice infected with either the Gamma or Omicron variants. Hence, considering the conserved nature of CD4 and CD8 T cell epitopes, we corroborate the hypothesis that induction of effector T-cells should be a main goal for new vaccines against the emergent SARS-CoV-2 VOCs.

13.
Einstein (Säo Paulo) ; 21: eAE0115, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1448183

RESUMO

ABSTRACT This study proposes a strategy for large-scale testing among a large number of people for the early diagnosis of COVID-19 to elucidate the epidemiological situation. Pool testing involves the analysis of pooled samples. This study aimed to discuss a reverse transcription technique followed by quantitative real-time polymerase chain reaction using pool testing to detect SARS-CoV-2 in nasopharyngeal swab samples. The study proposes an innovative diagnostic strategy that contributes to resource optimization, cost reduction, and improved agility of feedback from results.

14.
Viruses ; 14(12)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560750

RESUMO

Since its first identification in Brazil, the variant of concern (VOC) Gamma has been associated with increased infection and transmission rates, hospitalizations, and deaths. Minas Gerais (MG), the second-largest populated Brazilian state with more than 20 million inhabitants, observed a peak of cases and deaths in March-April 2021. We conducted a surveillance study in 1240 COVID-19-positive samples from 305 municipalities distributed across MG's 28 Regional Health Units (RHU) between 1 March to 27 April 2021. The most common variant was the VOC Gamma (71.2%), followed by the variant of interest (VOI) zeta (12.4%) and VOC alpha (9.6%). Although the predominance of Gamma was found in most of the RHUs, clusters of Zeta and Alpha variants were observed. One Alpha-clustered RHU has a history of high human mobility from countries with Alpha predominance. Other less frequent lineages, such as P.4, P.5, and P.7, were also identified. With our genomic characterization approach, we estimated the introduction of Gamma on 7 January 2021, at RHU Belo Horizonte. Differences in mortality between the Zeta, Gamma and Alpha variants were not observed. We reinforce the importance of vaccination programs to prevent severe cases and deaths during transmission peaks.


Assuntos
COVID-19 , Humanos , Brasil/epidemiologia , Estudos Retrospectivos , COVID-19/epidemiologia , SARS-CoV-2 , Genômica
15.
PLoS Negl Trop Dis ; 16(10): e0010845, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36260546

RESUMO

Chagas disease, caused by the protozoan Trypanosoma cruzi, is a serious chronic parasitic disease, currently treated with Nifurtimox (NFX) and Benznidazole (BZ). In addition to high toxicity, these drugs have low healing efficacy, especially in the chronic phase of the disease. The existence of drug-resistant T. cruzi strains and the occurrence of cross-resistance between BZ and NFX have also been described. In this context, it is urgent to study the metabolism of these drugs in T. cruzi, to better understand the mechanisms of resistance. Prostaglandin F2α synthase (PGFS) is an enzyme that has been correlated with parasite resistance to BZ, but the mechanism by which resistance occurs is still unclear. Our results show that the genome of the CL Brener clone of T. cruzi, contains five PGFS sequences and three potential pseudogenes. Using CRISPR/Cas9 we generated knockout cell lines in which all PGFS sequences were disrupted, as shown by PCR and western blotting analyses. The PGFS deletion did not alter the growth of the parasites or their susceptibility to BZ and NFX when compared to wild-type (WT) parasites. Interestingly, NTR-1 transcripts were shown to be upregulated in ΔPGFS mutants. Furthermore, the ΔPGFS parasites were 1.6 to 1.7-fold less tolerant to oxidative stress generated by menadione, presented lower levels of lipid bodies than the control parasites during the stationary phase, and were less infective than control parasites.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Nifurtimox/uso terapêutico , Dinoprosta/uso terapêutico , Tripanossomicidas/uso terapêutico , Vitamina K 3/uso terapêutico , Doença de Chagas/parasitologia , Estresse Oxidativo
16.
J Clin Virol Plus ; 2(3): 100101, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35959109

RESUMO

There is a massive demand to identify alternative methods to detect new cases of COVID-19 as well as to investigate the epidemiology of the disease. In many countries, importation of commercial kits poses a significant impact on their testing capacity and increases the costs for the public health system. We have developed an ELISA to detect IgG antibodies against SARS-CoV-2 using a recombinant viral nucleocapsid (rN) protein expressed in E. coli. Using a total of 894 clinical samples we showed that the rN-ELISA was able to detect IgG antibodies against SARS-CoV-2 with high sensitivity (97.5%) and specificity (96.3%) when compared to a commercial antibody test. After three external validation studies, we showed that the test accuracy was higher than 90%. The rN-ELISA IgG kit constitutes a convenient and specific method for the large-scale determination of SARS-CoV-2 antibodies in human sera with high reliability.

17.
J Clin Virol Plus ; : 100103, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35993012

RESUMO

There is a massive demand to identify alternative methods to detect new cases of COVID-19 as well as to investigate the epidemiology of the disease. In many countries, importation of commercial kits poses a significant impact on their testing capacity and increases the costs for the public health system. We have developed an ELISA to detect IgG antibodies against SARS-CoV-2 using a recombinant viral nucleocapsid (rN) protein expressed in E. coli. Using a total of 894 clinical samples we showed that the rN-ELISA was able to detect IgG antibodies against SARS-CoV-2 with high sensitivity (97.5%) and specificity (96.3%) when compared to a commercial antibody test. After three external validation studies, we showed that the test accuracy was higher than 90%. The rN-ELISA IgG kit constitutes a convenient and specific method for the large-scale determination of SARS-CoV-2 antibodies in human sera with high reliability.

18.
Virus Evol ; 8(2): veac064, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35996592

RESUMO

The emergence and global dissemination of Severe Acute Respiratory Syndrome virus 2 (SARS-CoV-2) variants of concern (VOCs) have been described as the main factor driving the Coronavirus Disease 2019 pandemic. In Brazil, the Gamma variant dominated the epidemiological scenario during the first period of 2021. Many Brazilian regions detected the Delta variant after its first description and documented its spread. To monitor the introduction and spread of VOC Delta, we performed Polymerase Chain Reaction (PCR) genotyping and genome sequencing in ten regional sentinel units from June to October 2021 in the State of Minas Gerais (MG). We documented the introduction and spread of Delta, comprising 70 per cent of the cases 8 weeks later. Comparing the viral loads of the Gamma and Delta dominance periods, we provide additional evidence that the latter is more transmissible. The spread and dominance of Delta did not culminate in the increase in cases and deaths, suggesting that the vaccination may have restrained the epidemic growth. Analysis of 224 novel Delta genomes revealed that Rio de Janeiro state was the primary source for disseminating this variant in the state of MG. We present the establishment of Delta, providing evidence of its enhanced transmissibility and showing that this variant shift did not aggravate the epidemiological scenario in a high immunity setting.

19.
Nat Commun ; 13(1): 4831, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977933

RESUMO

Both T cells and B cells have been shown to be generated after infection with SARS-CoV-2 yet protocols or experimental models to study one or the other are less common. Here, we generate a chimeric protein (SpiN) that comprises the receptor binding domain (RBD) from Spike (S) and the nucleocapsid (N) antigens from SARS-CoV-2. Memory CD4+ and CD8+ T cells specific for SpiN could be detected in the blood of both individuals vaccinated with Coronavac SARS-CoV-2 vaccine and COVID-19 convalescent donors. In mice, SpiN elicited a strong IFN-γ response by T cells and high levels of antibodies to the inactivated virus, but not detectable neutralizing antibodies (nAbs). Importantly, immunization of Syrian hamsters and the human Angiotensin Convertase Enzyme-2-transgenic (K18-ACE-2) mice with Poly ICLC-adjuvanted SpiN promotes robust resistance to the wild type SARS-CoV-2, as indicated by viral load, lung inflammation, clinical outcome and reduction of lethality. The protection induced by SpiN was ablated by depletion of CD4+ and CD8+ T cells and not transferred by antibodies from vaccinated mice. Finally, vaccination with SpiN also protects the K18-ACE-2 mice against infection with Delta and Omicron SARS-CoV-2 isolates. Hence, vaccine formulations that elicit effector T cells specific for the N and RBD proteins may be used to improve COVID-19 vaccines and potentially circumvent the immune escape by variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , Nucleocapsídeo , Proteínas do Nucleocapsídeo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
20.
Epidemiol Serv Saude ; 31(1): e2021409, 2022.
Artigo em Inglês, Português | MEDLINE | ID: mdl-35475998

RESUMO

OBJECTIVE: To show the feasibility of the combined use of self-collected nasopharyngeal swab and pool testing to detect SARS-CoV-2 in epidemiological surveys. METHODS: This experience included a sample of 154 students at the Universidade Federal de Minas Gerais, who performed self-collected nasopharyngeal swab in individual cabins and without supervision. The molecular test was performed using the pool testing technique. RESULTS: It took each person 5 minutes to collect the sample. An analysis was performed to detect endogenous RNA in 40 samples. The results showed that there were no failures resulting from self-collection. None of the pools detected the presence of viral RNA. The cost of molecular testing (RT-PCR), by pool testing, with samples obtained by self-collection was about ten times lower than the usual methods. CONCLUSION: The strategies that were investigated proved to be economically feasible and valid for the research on SARS-CoV-2 in epidemiological surveys.


Assuntos
COVID-19 , Estudantes de Medicina , Brasil/epidemiologia , COVID-19/diagnóstico , Estudos de Viabilidade , Humanos , Nasofaringe , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA