Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 179: 114025, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342545

RESUMO

Bamboo is a highly sustainable plant with a wide variety of leaves, yet little is known about its bioactive composition. Therefore, this study aims to characterize the phenolic profile and antioxidant capacity of 11 different varieties of bamboo leaves using liquid chromatography coupled with mass spectrometry. As a result, 81 phenolic compounds were tentatively identified, 29 of which were identified for the first time in the literature for bamboo leaves. The tentatively identified compounds fell into five classes (hydroxybenzoic and hydroxycinnamic acids, flavones, flavanones, and flavonols). The concentration of phenolic compounds ranged from 103 to 1291 mg/100 g. Among the provisionally identified compounds, there was a predominance of derivatives from the luteolin and apigenin group, with orientin and schaftoside being the majority in each group, respectively. The leaves also showed significant variation in antioxidant activity, highlighting the potential bioactive composition of bamboo leaves for future applications in the food industry.


Assuntos
Antioxidantes , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Extratos Vegetais/química , Fenóis/análise
2.
Food Res Int ; 167: 112607, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087225

RESUMO

Probiotic bacteria and bioactive compounds obtained from plant origin stand out as ingredients with the potential to increase the healthiness of functional foods, as there is currently a recurrent search for them. Probiotics and bioactive compounds are sensitive to intrinsic and extrinsic factors in the processing and packaging of the finished product. In this sense, the present study aims to evaluate the co-encapsulation by spray dryer (inlet air temperature 120 °C, air flow 40 L / min, pressure of 0.6 MPa and 1.5 mm nozzle diameter) of probiotic bacteria (L.plantarum) and compounds extracted from red beet stems (betalains) in order to verify the interaction between both and achieve better viability and resistance of the encapsulated material. When studying the co-encapsulation of L.plantarum and betalains extracted from beet stems, an unexpected influence was observed with a decrease in probiotic viability in the highest concentration of extract (100 %), on the other hand, the concentration of 50 % was the best enabled and maintained the survival of L.plantarum in conditions of 25 °C (63.06 %), 8 °C (88.80 %) and -18 °C (89.28 %). The viability of the betalains and the probiotic was better preserved in storage at 8 and -18 °C, where the encapsulated stability for 120 days was successfully achieved. Thus, the polyfunctional formulation developed in this study proved to be promising, as it expands the possibilities of application and development of new foods.


Assuntos
Beta vulgaris , Lactobacillus plantarum , Probióticos , Viabilidade Microbiana , Preservação Biológica
3.
Food Chem ; 340: 127958, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32916406

RESUMO

Although blueberries are widely studied, little information exists on their composition and content of flavonol glycosides. Most studies identify only a few flavonols in blueberries due to separation and identification issues. In the present study, we identified 44 flavonols and chlorogenic acid in 30 samples of Highbush and Rabbiteye blueberry, using HPLC-DAD-ESI-MSn. Highbush group fruits presented mainly quercetin-3-galactoside in their composition, while Rabbiteye group fruits exhibited higher levels of quercetin-3-rhamnoside and quercetin-3-glucuronide. Among the identified flavonols, 8 acylates (acetyl and hydroxymethylglutaroyl) were found, of which quercetin-3-O-[4″-(3-hydroxy-3-methylglutaroyl)]-α-rhamnoside was found for the first time in blueberries. This compound is exclusive to the cultivars Florida and Powderblue, where it is present in high quantities. Glucuronides of syringetin and laricitrin, and rhamnosyl-galactosides of myricetin, quercetin and isorhamnetin were also found for the first time in blueberries. The Principal Component Analysis showed that blueberry groups can be distinguished based on their phenolic compound profile.


Assuntos
Mirtilos Azuis (Planta)/química , Cromatografia Líquida de Alta Pressão/métodos , Análise de Alimentos/métodos , Fenóis/análise , Análise de Componente Principal , Espectrometria de Massas por Ionização por Electrospray/métodos , Frutas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...