Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(12): 14864-14882, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483816

RESUMO

This research introduces a novel series of perfluorinated Zn(II) porphyrins with positive oxidation potentials designed as sensitizers for photoelectrosynthetic cells, with a focus on promoting the oxidation of benzyl alcohol (BzOH) mediated by the 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO) organocatalyst. Three dyes, CLICK-3, CLICK-4, and BETA-4, are meticulously designed to explore the impact of substituents and their positions on the perfluorinated porphyrin ring in terms of redox potentials and energy level alignment when coupled with SnO2/TiO2-based photoanodes and TEMPO mediator. A comprehensive analysis utilizing spectroscopy, electrochemistry, photophysics, and computational techniques of the dyes in solution and sensitized thin films unveils an enhanced charge-separation character in the 4D-π-1A type BETA-4. Incorporating four dimethylamino donor groups at the periphery of the porphyrin ring and a BTD-accepting linker at the ß-pyrrolic position equips the structure with a more efficient donor-acceptor system. This enhancement ensures improved light-harvesting capacity, resulting in a doubled incident photon-to-current conversion efficiency (IPCE% ≃30%) in the presence of LiI compared to meso-substituted dyes CLICK-3 and CLICK-4. Sensitizing SnO2/TiO2 thin films with BETA-4 successfully promotes the photooxidation of benzyl alcohol (BzOH) in the presence of the rapid TEMPO radical catalyst, yielding photocurrents of approximately 125 µA/cm2 in an optimized TBPy/LiClO4/ACN electrolyte. Notably, when lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) replaces TBPy as the base for TEMPO-catalyzed BzOH oxidation, a remarkable photocurrent of around 800 µA/cm2 is achieved, marking one of the highest values reported for this photoelectrochemical reaction to date. This study underscores that the proper functionalization of perfluorinated zinc porphyrins positions these dyes as ideal candidates for sensitizing SnO2/TiO2 in the photodriven oxidation of BzOH. It also highlights the crucial role of carefully tuning electrolyte composition based on the electronic properties of molecular sensitizers.

2.
Materials (Basel) ; 16(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570131

RESUMO

Following some previous work by some of us on the second order nonlinear optical (NLO) properties of Zn(II) meso-tetraphenylporphyrin (ZnP), fullerene, and ferrocene (Fc) diads and triads, in the present research, we explore the NLO response of some new hybrids with two-dimensional graphene nanoplates (GNP) instead of a zero-dimensional fullerene moiety as the acceptor unit. The experimental data, collected by Electric Field Induced Second Harmonic generation (EFISH) technique in CH2Cl2 solution with a 1907 nm incident wavelength, combined with Coupled-Perturbed (CP) and Finite Field (FF) Density Functional Theory (DFT) calculations, show a strongly enhanced contribution of the cubic electronic term γ(-2ω; ω, ω, 0), due to the extended π-conjugation of the carbonaceous acceptor moiety.

3.
Materials (Basel) ; 14(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34442930

RESUMO

In this research, we investigated the second-order nonlinear optical (NLO) properties of multicomponent hybrid materials formed by meso-tetraphenylporphyrin P (both as free base and ZnII complex), carrying in 2 or 2,12 ß-pyrrolic position an electron donor ferrocene (Fc), and/or an electron acceptor fullerene (C60) moiety, connected to the porphyrin core via an ethynyl or an ethynylphenyl spacer. We measured the NLO response by the electric-field-induced second-harmonic generation (EFISH) technique in CH2Cl2 solution with a 1907 nm incident wavelength, recording for all the investigated compounds unexpected negative values of µß1907. Since density functional theory (DFT) calculations evidenced for P-Fc dyads almost null ground state dipole moments and very low values for P-C60 dyads and Fc-P-C60 triads, our EFISH results suggested a significant contribution to γEFISH of the purely electronic cubic term γ(-2ω; ω, ω, 0), which prevails on the quadratic dipolar orientational one µß(-2ω; ω, ω)/5kT, as confirmed by computational evidence.

4.
Inorg Chem ; 59(11): 7561-7570, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412749

RESUMO

In this work, we have prepared a series of A4 ZnII porphyrins, carrying in the ß-pyrrolic-position one or two π-delocalized ethynylphenyl moieties with a -NO2 acceptor or a -NMe2 donor pendant, and measured their second-order NLO response in CHCl3 solution at 1907 nm via the electric-field-induced second harmonic generation (EFISH) technique. For some of these compounds, we have recorded an unexpected sign and/or absolute value of µß1907. Since their sterically hindered A4 structure should ensure the lack of significant aggregation processes in solution, we explain such anomalous EFISH results by invoking a non-negligible contribution of the electronic cubic term γ(-2ω; ω, ω, 0) to γEFISH, as supported by a qualitative evaluation of the third-order response through the measure of the cubic hyperpolarizability (γTHG) and by computational evidence.

5.
ACS Appl Mater Interfaces ; 11(41): 37981-37990, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31539222

RESUMO

We investigated the impact of singly occupied molecular orbital (SOMO) energy on the n-doping efficiency of benzimidazole derivatives. By designing and synthesizing a series of new air-stable benzimidazole-based dopants with different SOMO energy levels, we demonstrated that an increase of the dopant SOMO energy by only ∼0.3 eV enhances the electrical conductivity of a benchmark electron-transporting naphthalenediimide-bithiophene polymer by more than 1 order of magnitude. By combining electrical, X-ray diffraction, and electron paramagnetic resonance measurements with density functional theory calculations and analytical transport simulations, we quantitatively characterized the conductivity, Seebeck coefficient, spin density, and crystallinity of the doped polymer as a function of the dopant SOMO energy. Our findings strongly indicate that charge and energy transport are dominated by the (relative) position of the SOMO level, whereas morphological differences appear to play a lesser role. These results set molecular-design guidelines for next-generation n-type dopants.

6.
ACS Appl Mater Interfaces ; 11(36): 32895-32908, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31429275

RESUMO

Three perfluorinated ZnII porphyrins were evaluated as n-type sensitizers in photoelectrosynthetic cells for HBr and water splitting. All the dyes are featured by the presence of pentafluorophenyl electron-withdrawing groups to increase the ground-state oxidation potential and differ for the nature and position of the π-conjugate linker between the core and anchoring group tasked to bind the metal oxide, in order to assess the best way of coupling with the semiconductor. A phenyl-triazole moiety was used to link the carboxylic anchoring group onto the meso position, while an ethynyl-phenyl linker was chosen to bridge carboxylic and cyanoacrylic groups onto the ß-pyrrolic position. A combination of electrochemical, computational, and spectroscopic investigations confirmed the strong electron-withdrawing effect of the perfluorinated porphyrin core, which assures all the investigated dyes of the high oxidation potential required to the coupling with water oxidation catalysts (WOC). Such an electron-poor core, however, affects the charge separation character of the dyes, as demonstrated by the spatial distribution of the excited states, leading to a nonquantitative charge injection, although tilting of the molecules on the semiconductor surface could bring the porphyrin ring closer to the semiconductor, offering additional charge-transfer pathways. Indeed, all the dyes demonstrated successful in the splitting of both aqueous HBr and water, with the best results found for the SnO2/TiO2 photoanode sensitized with the ß-substituted porphyrin equipped with a cyanoacrylic terminal group, achieving 0.4 and 0.1 mA/cm2 photoanodic currents in HBr and water under visible light, respectively. The faradaic yield for oxygen evolution in the presence of an IrIV catalyst was over 95%, and the photoanode operation was stable for more than 1000 s. Thus, the perfluorinated porphyrins with a cyanoacrylic anchoring group at the ß-position should be considered for further development to improve the charge-transfer character.

7.
Front Chem ; 7: 177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31032244

RESUMO

Dye-Sensitized Solar Cells (DSSCs) are a highly promising alternative to conventional photovoltaic silicon-based devices, due to the potential low cost and the interesting conversion efficiencies. A key-role is played by the dye, and porphyrin sensitizers have drawn great interest because of their excellent light harvesting properties mimicking photosynthesis. Indeed, porphyrins are characterized by strong electronic absorption bands in the visible region up to the near infrared and by long-lived π* singlet excited states. Moreover, the presence of four meso and eight ß-pyrrolic positions allows a fine tuning of their photoelectrochemical properties through structural modification. Trans-A2BC push-pull ZnII porphyrins, characterized by a strong and directional electron excitation process along the push-pull system, have been extensively investigated. On the other hand, A4 ß-pyrrolic substituted tetraaryl ZnII porphyrins, which incorporate a tetraaryl porphyrinic core as a starting material, have received lower attention, even if they are synthetically more attractive and show several advantages such as a more sterically hindered architecture and enhanced solubility in most common organic solvents. The present contribution intends to review the most prominent A4 ß-substituted ZnII porphyrins reported in the literature so far for application in DSSCs, focusing on the strategies employed to enhance the light harvesting capability of the dye and on a comparison with meso-substituted analogs.

8.
Inorg Chem ; 56(22): 14189-14197, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29091412

RESUMO

The combination of ß-substituted Zn2+ porphyrin dyes and copper-based electrolytes represents a sustainable route for economic and environmentally friendly dye-sensitized solar cells. Remarkably, a new copper electrolyte, [Cu(2-mesityl-1,10-phenanthroline)2]+/2+, exceeds the performance reached by Co2+/3+ and I-/I3- reference electrolytes.

9.
Inorg Chem ; 56(11): 6438-6450, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28475347

RESUMO

A series of 5,15 push-pull meso-diarylzinc(II) porphyrinates, carrying one or two -COOH or -COOCH3 acceptor groups and a -OCH3 or a -N(CH3)2 donor group, show in N,N-dimethylformamide and CHCl3 solutions a negative and solvent-dependent second-order nonlinear-optical (NLO) response measured by the electric-field-induced second-harmonic generation (EFISH) technique, different from the structurally related zinc(II) porphyrinate carrying a -N(CH3)2 donor group and a -NO2 acceptor group, where a still solvent-dependent but positive EFISH second-order response was previously reported. Moreover, when a -N(CH3)2 donor group and a -COOH acceptor group are part of a sterically hindered 2,12 push-pull ß-pyrrolic-substituted tetraarylzinc(II) porphyrinate, the EFISH response is positive and solvent-independent. In order to rationalize these rather intriguing series of observations, EFISH measurements have been integrated by electronic absorption and IR spectroscopic investigations and by density functional theory (DFT) and coupled-perturbed DFT theoretical and 1H pulsed-gradient spin-echo NMR investigations, which prompt that the significant concentration effects and the strong influence of the solvent nature on the NLO response are originated by a complex whole of different aggregation processes induced by the -COOH group.

10.
J Org Chem ; 80(10): 4973-80, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25894251

RESUMO

The antipodal introduction of two bromine atoms on the 2,12 ß-pyrrolic position of 5,10,15,20-tetra(3,5-di-tert-butylphenyl)porphyrin was successfully achieved by a light-induced reaction of the substrate with excess NBS. Complexation with Ni(II) of the major regioisomer led to good quality crystals, suitable for X-ray structure determination with unprecedented probability levels. The regiospecific character of the synthetic procedure and the exactness of the bromine atom position assignment were thus confirmed, suggesting an unexpected electrophilic aromatic substitution pathway rather than a free-radical halogenation process. A QTAIM topological analysis on the DFT-optimized wave function of the monosubstituted free-base porphyrin intermediate carrying a bromine atom in C2 ß-pyrrolic position confirmed the largest negative charge for the C12 carbon atom in antipodal position, in agreement with the proposed electrophilic aromatic substitution mechanism.

11.
Phys Chem Chem Phys ; 16(42): 23404-11, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25264846

RESUMO

Tricyanofuran (TCF) derivatives attached to both anthracene and pyrene moieties were synthesised and characterised by optical, electrochemical and computational techniques. Both compounds exhibited similar absorption profile as well as electrochemical behaviour, however the pyrene derivative showed 20-fold higher non-linear optical activity measured by the EFISH technique. This huge difference has been assigned to (i) a lower molar absorption and (ii) a higher torsion angle for the anthracene derivative, confirmed by both experimental X-ray diffraction and DFT calculations. Furthermore, we note that the µß1.907 value of -1700 × 10(-48) esu recorded for the pyrene derivative in CHCl3/pyridine is remarkable for a NLO chromophore lacking a classical push-pull structure.

12.
ACS Appl Mater Interfaces ; 6(18): 15841-52, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25089649

RESUMO

Time-resolved photophysical and photoelectrochemical investigations have been carried out to compare the electron transfer dynamics of a 2-ß-substituted tetraarylporphyrinic dye (ZnB) and a 5,15-meso-disubstituted diarylporphyrinic one (ZnM) at the electrolyte/dye/TiO2 interface in PSSCs. Although the meso push-pull structural arrangement has shown, up to now, to have the best performing architecture for solar cell applications, we have obtained superior energy conversion efficiencies for ZnB (6.1%) rather than for ZnM (3.9%), by using the I(-)/I3(-)-based electrolyte. To gain deeper insights about these unexpected results, we have investigated whether the intrinsic structural features of the two different porphyrinic dyes can play a key role on electron transfer processes occurring at the dye-sensitized TiO2 interface. We have found that charge injection yields into TiO2 are quite similar for both dyes and that the regeneration efficiencies by I(-), are also comparable and in the range of 75-85%. Moreover, besides injection quantum yields above 80%, identical dye loading, for both ZnB and ZnM, has been evidenced by spectrophotometric measurements on transparent thin TiO2 layers after the same adsorption period. Conversely, major differences have emerged by DC and AC (electrochemical impedance spectroscopy) photoelectrochemical investigations, pointing out a slower charge recombination rate when ZnB is adsorbed on TiO2. This may result from its more sterically hindered macrocyclic core which, besides guaranteeing a decrease of π-staking aggregation of the dye, promotes a superior shielding of the TiO2 surface against charge recombination involving oxidized species of the electrolyte.

13.
Inorg Chem ; 53(9): 4517-26, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24762131

RESUMO

We report the synthesis, characterization, nonlinear-optical (NLO) properties, and density functional theory (DFT) calculations for three nickel diiminedithiolate complexes [Ni(4,4'-R2carboxy-bpy)(L)] [R = methyl, L = 1,2-benzenedithiolate (bdt), 1; R = ethyl, L = 5,6-dihydro-1,4-dithine-2,3-dithiolate (dddt), 2; R = ethyl, L = 1-(N-methylindol-5-yl)ethene-1,2-dithiolate (mi-5edt), 3]. The crystal structure of 1 shows a square-planar coordination for the nickel ion and bond distances consistent with a diiminedithiolate description for the complex. For all complexes, the cyclic voltammetry measurements show two reversible reduction processes (-1.353/-1.380 V and -0798/-0.830 V, respectively) and an anodic wave (+0.372/+0.601 V). The UV-vis spectra present a band around 600-700 nm (ε = 4880-6000 dm(3) mol(-1) cm(-1)) mainly attributed to a charge-transfer highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) transition, which shows a large negative solvatochromic shift, characteristic of push-pull complexes, and is responsible for the NLO properties of these molecules. The charge-transfer character of this electronic transition is confirmed by DFT calculations, with the HOMO mainly centered on the dithiolate moiety and the LUMO on the bpy ligand, with important contribution given by the carboxyl groups (≈13%). Small contributions from the nickel(II) ion are present in both of the frontier orbitals. The carboxyl groups enhance the optical properties of this class of complexes, confirmed by comparison with the corresponding unsubstituted compounds. The second-order NLO properties have been measured by an electric-field-induced second-harmonic-generation technique using a 10(-3) M solution in N,N-dimethylformamide and working with a 1.907 µm incident wavelength, giving for µß1.907 (µß0) values of -1095 (-581), -2760 (-954), and -1650 (-618) × 10(-48) esu for 1-3, respectively. These values are among the highest in the class of square-planar push-pull complexes, similar to those found for dithionedithiolate compounds. Moreover, spectroelectrochemical experiments demonstrate the possibility of using these complexes as redox-switchable NLO chromophores.

14.
Chemistry ; 19(32): 10723-40, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23794212

RESUMO

A facile and fast approach, based on microwave-enhanced Sonogashira coupling, has been employed to obtain in good yields both mono- and, for the first time, disubstituted push-pull Zn(II) porphyrinates bearing a variety of ethynylphenyl moieties at the ß-pyrrolic position(s). Furthermore, a comparative experimental, electrochemical, and theoretical investigation has been carried out on these ß-mono- or disubstituted Zn(II) porphyrinates and meso-disubstituted push-pull Zn(II) porphyrinates. We have obtained evidence that, although the HOMO-LUMO energy gap of the meso-substituted push-pull dyes is lower, so that charge transfer along the push-pull system therein is easier, the ß-mono- or disubstituted push-pull porphyrinic dyes show comparable or better efficiencies when acting as sensitizers in DSSCs. This behavior is apparently not attributable to more intense B and Q bands, but rather to more facile charge injection. This is suggested by the DFT electron distribution in a model of a ß-monosubstituted porphyrinic dye interacting with a TiO2 surface and by the positive effect of the ß substitution on the incident photon-to-current conversion efficiency (IPCE) spectra, which show a significant intensity over a broad wavelength range (350-650 nm). In contrast, meso-substitution produces IPCE spectra with two less intense and well-separated peaks. The positive effect exerted by a cyanoacrylic acid group attached to the ethynylphenyl substituent has been analyzed by a photophysical and theoretical approach. This provided supporting evidence of a contribution from charge-transfer transitions to both the B and Q bands, thus producing, through conjugation, excited electrons close to the carboxylic anchoring group. Finally, the straightforward and effective synthetic procedures developed, as well as the efficiencies observed by photoelectrochemical measurements, make the described ß-monosubstituted Zn(II) porphyrinates extremely promising sensitizers for use in DSSCs.

15.
Dalton Trans ; 41(39): 12106-13, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22914884

RESUMO

The donor-acceptor type mixed-ligand complexes [M(Bz(2)pipdt)(dsit)]; dsit = 2-thioxo-1,3-dithiole-4,5-diselenolato (donor); Bz(2)pipdt = 1,4-dibenzyl-piperazine-2,3-dithione (acceptor); M(II) = Ni (1), Pd (2), and Pt (3) were prepared and characterized to investigate the variation of the properties by substituting selenium for sulfur in the donor ligand dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato of the corresponding known complexes. Both these classes of complexes exhibit large negative second-order polarizabilities, amongst the highest values determined so far for metal-complexes, and are potential candidates for redox switchability of the molecular first hyperpolarizability due to the bleaching/restoring of the solvatochromic peak for mono-reduction/oxidation. DFT and TD-DFT calculations on 1-3 allow one to correlate geometries and electronic structures and are in agreement with the observed minor changes following the substitution of selenium for sulfur atoms in the dichalcogenolato ligand. The observed differences can be ascribed to the increased size of the selenium atom leading to increased M-X distances and dipolar moments of the ground state, which are highest for the Pd-derivative in the triad.

16.
Dalton Trans ; 41(22): 6707-14, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22508154

RESUMO

The dipolar and octupolar contributions of the second order nonlinear optical properties of [(4'-(C(6)H(4)-p-D)-2,2':6',2''-terpyridine)-Ru-(4'-(C(6)H(4)-p-A)-2,2':6',2''-terpyridine)]Y(2) heteroleptic complexes (D and A are donor and acceptor groups, respectively), and related free terpyridines and homoleptic complexes, have been obtained by means of a comprehensive combination of Electric Field Induced Second Harmonic generation, Third Harmonic Generation, and Harmonic Light Scattering measurements. These results evidence how a metal can act as a bridge between two π-delocalized terpyridine moieties bearing a D and an A group, respectively, leading to a large quadratic hyperpolarizability hugely dominated by the octupolar contribution.

17.
Dalton Trans ; 41(12): 3485-93, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22327944

RESUMO

The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (µß(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.

18.
J Am Chem Soc ; 132(13): 4966-70, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20225872

RESUMO

The second-order nonlinear optical (NLO) properties of [Ln(hfac)(3)(diglyme)] (hfac = hexafluoroacetylacetonate; diglyme = bis(2-methoxyethyl)ether; Ln = La, Ce, Pr, Sm, Eu, Gd, Er, Lu) complexes have been investigated by a combination of electric-field second harmonic generation (EFISH) and harmonic light scattering (HLS) techniques, providing evidence for the relevant role of f electrons in tuning the second-order NLO response dominated by the octupolar contribution. These lanthanide NLO chromophores allow a clean valuation of the influence of f electrons on the quadratic hyperpolarizability and on its dipolar and octupolar contributions. Molecular quadratic hyperpolarizability values measured by the EFISH method, beta(EFISH), initially increase rapidly with the number of f electrons, the value for the Gd complex being 11 times that of the La complex, whereas this increase is much lower for the last seven f electrons, the beta(EFISH) value of the Lu complex being only 1.2 times that of the Gd complex. The increase of beta(HLS), which is dominated by an octupolar contribution, is much lower along the Ln series. Remarkably, the good beta(HLS) values of these simple systems, well known for their luminescence properties, are reached at no cost of transparency.


Assuntos
Etilenoglicóis/química , Cetonas/química , Elementos da Série dos Lantanídeos/química , Éteres Metílicos/química , Compostos Organometálicos/química , Eletroquímica , Modelos Moleculares , Óptica e Fotônica , Compostos Organometálicos/síntese química
19.
Chemphyschem ; 11(2): 495-507, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20029883

RESUMO

A series of 4-X-1-methylpyridinium cationic nonlinear optical (NLO) chromophores (X = (E)-CH=CHC(6)H(5); (E)-CH=CHC(6)H(4)-4'-C(CH(3))(3); (E)-CH=CHC(6)H(4)-4'-N(CH(3))(2); (E)-CH=CHC(6)H(4)-4'-N(C(4)H(9))(2); (E,E)-(CH=CH)(2)C(6)H(4)-4'-N(CH(3))(2)) with various organic (CF(3)SO(3)(-), p-CH(3)C(6)H(4)SO(3)(-)), inorganic (I(-), ClO(4)(-), SCN(-), [Hg(2)I(6)](2-)) and organometallic (cis-[Ir(CO)(2)I(2)](-)) counter anions are studied with the aim of investigating the role of ion pairing and of ionic dissociation or aggregation of ion pairs in controlling their second-order NLO response in anhydrous chloroform solution. The combined use of electronic absorption spectra, conductimetric measurements and pulsed field gradient spin echo (PGSE) NMR experiments show that the second-order NLO response, investigated by the electric-field-induced second harmonic generation (EFISH) technique, of the salts of the cationic NLO chromophores strongly depends upon the nature of the counter anion and concentration. The ion pairs are the major species at concentration around 10(-3) M, and their dipole moments were determined. Generally, below 5x10(-4) M, ion pairs start to dissociate into ions with parallel increase of the second-order NLO response, due to the increased concentration of purely cationic NLO chromophores with improved NLO response. At concentration higher than 10(-3) M, some multipolar aggregates, probably of H type, are formed, with parallel slight decrease of the second-order NLO response. Ion pairing is dependent upon the nature of the counter anion and on the electronic structure of the cationic NLO chromophore. It is very strong for the thiocyanate anion in particular and, albeit to a lesser extent, for the sulfonated anions. The latter show increased tendency to self-aggregate.

20.
Phys Chem Chem Phys ; 11(41): 9450-7, 2009 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19830328

RESUMO

The intensity of the two-photon absorption (TPA) spectrum of a terpyridine ligand acting as a D-pi-A chromophore (D = donor and A = acceptor) is enhanced by a factor of about 2 upon coordination to ZnCl(2). Based on an analysis of linear absorption and fluorescence spectra of both the ligand and its Zn(II) complex, we have defined essential-state models for the two species. Linear and TPA spectra of the ligand are well reproduced in terms of a two-state model accounting for the D-pi-A <--> D(+)-pi-A(-) charge resonance. However, the enhancement of the TPA response of its Zn(II) complex can only be understood by extending the model to account for the active role of the "ZnCl(2)" moiety acting as a virtual A(v) acceptor group of a D-pi-AA(v) structure. The virtual D(+)AA(v)(-) state of the relevant three-state model has negligible weight in the ground state but contributes to the first excited state. The resulting increase of the excited-state dipole moment is responsible for the enhancement of the TPA cross section, and also explains the increase of the second order nonlinear optical response upon coordination.


Assuntos
Cloretos/química , Fótons , Compostos de Zinco/química , Absorção , Transporte de Elétrons , Modelos Químicos , Piridinas/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...