Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(4): pgae164, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38689704

RESUMO

Optical fibers aim to image in vivo biological processes. In this context, high spatial resolution and stability to fiber movements are key to enable decision-making processes (e.g. for microendoscopy). Recently, a single-pixel imaging technique based on a multicore fiber photonic lantern has been designed, named computational optical imaging using a lantern (COIL). A proximal algorithm based on a sparsity prior, dubbed SARA-COIL, has been further proposed to solve the associated inverse problem, to enable image reconstructions for high resolution COIL microendoscopy. In this work, we develop a data-driven approach for COIL. We replace the sparsity prior in the proximal algorithm by a learned denoiser, leading to a plug-and-play (PnP) algorithm. The resulting PnP method, based on a proximal primal-dual algorithm, enables to solve the Morozov formulation of the inverse problem. We use recent results in learning theory to train a network with desirable Lipschitz properties, and we show that the resulting primal-dual PnP algorithm converges to a solution to a monotone inclusion problem. Our simulations highlight that the proposed data-driven approach improves the reconstruction quality over variational SARA-COIL method on both simulated and real data.

2.
Appl Opt ; 63(1): 159-166, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175017

RESUMO

A fiber-connectorized K-band integrated-optics two-telescope beam combiner was developed for long-baseline interferometry at the CHARA telescope array utilizing the ultrafast laser inscription (ULI) technique. Single-mode waveguide insertion losses were measured to be ∼1.1d B over the 2-2.3 µm window. The development of asymmetric directional couplers enabled the construction of a beam combiner that includes a 50:50 coupler for interferometric combination and two ∼75:25 couplers for photometric calibration. The visibility of the bare beam combiner was measured at 87% and then at 82% after fiber-connectorization by optimizing the input polarization. These results indicate that ULI technique can fabricate efficient fiber-connectorized K-band beam combiners for astronomical purposes.

3.
Opt Express ; 32(1): 922-931, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175113

RESUMO

We present a method with potential for fabricating freeform air-silica optical fibre preforms which is free from the stacking constraints associated with conventional stack-and-draw. The method, termed Axi-Stack, is enabled by the precision machining of short cross-sectional preform discs by ultrafast laser assisted etching; a laser-based microfabrication technique which facilitates near arbitrary shaping of the preform structure. Several preform discs are stacked axially and fused together via ultrafast laser welding to construct the preform, which can be drawn to fibre using conventional methods. To illustrate the Axi-Stack process, we detail the fabrication of a 30 cm long solid-core photonic crystal fibre preform with a square lattice of cladding holes and characterise fibre drawn from it.

4.
IEEE Trans Biomed Eng ; 70(8): 2374-2383, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37022914

RESUMO

Fiber-based Raman spectroscopy in the context of in vivo biomedical application suffers from the presence of background fluorescence from the surrounding tissue that might mask the crucial but inherently weak Raman signatures. One method that has shown potential for suppressing the background to reveal the Raman spectra is shifted excitation Raman spectroscopy (SER). SER collects multiple emission spectra by shifting the excitation by small amounts and uses these spectra to computationally suppress the fluorescence background based on the principle that Raman spectrum shifts with excitation while fluorescence spectrum does not. We introduce a method that utilizes the spectral characteristics of the Raman and fluorescence spectra to estimate them more effectively, and compare this approach against existing methods on real world datasets.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos
5.
Opt Express ; 30(24): 42923-42932, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523002

RESUMO

A miniaturised structural health monitoring device has been developed capable of measuring the absolute distance between close parallel surfaces using Fabry-Pérot interferometry with nm-scale sensitivity. This is achieved by fabricating turning mirrors on two opposite cores of a multi-core fibre to produce a probe with dimensions limited only be the fibre diameter. Two fabrication processes have been investigated: Focused ion beam milling, which has resulted in a sensor measurement accuracy, sensitivity and range of ±0.056 µm, ±0.006 µm and ∼16000  µm respectively; and ultrafast laser assisted etching of the cleaved fibre end, where a sensor measurement accuracy, sensitivity and range of ±0.065 µm, ±0.006 µm and ∼7500 µm have been demonstrated.


Assuntos
Tecnologia de Fibra Óptica , Interferometria , Lasers
6.
Opt Express ; 30(11): 18903-18918, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221681

RESUMO

Ultrafast-laser-induced selective chemical etching is an enabling microfabrication technology compatible with optical materials such as fused silica. The technique offers unparalleled three-dimensional manufacturing freedom and feature resolution but can be limited by long laser inscription times and widely varying etching selectivity depending on the laser irradiation parameters used. In this paper, we aim to overcome these limitations by employing beam shaping via a spatial light modulator to generate a vortex laser focus with controllable depth-of-focus (DOF), from diffraction limited to several hundreds of microns. We present the results of a thorough parameter-space investigation of laser irradiation parameters, documenting the observed influence on etching selectivity and focus elongation in the polarization-insensitive writing regime, and show that etching selectivity greater than 800 is maintained irrespective of the DOF. To demonstrate high-throughput laser writing with an elongated DOF, geometric shapes are fabricated with a 12-fold reduction in writing time compared to writing with a phase-unmodulated Gaussian focus.

7.
Appl Opt ; 60(19): AP1-AP6, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34263871

RESUMO

Astrophotonics is an emerging field that focuses on the development of photonic components for astronomical instrumentation. With ongoing advancements, astrophotonic solutions are already becoming an integral part of existing instruments. A recent example is the €60M ESO GRAVITY instrument at the Very Large Telescope Interferometer, Chile, that makes heavy use of photonic components. We envisage far-reaching applications in future astronomical instruments, especially those intended for the new generation of extremely large telescopes and in space. With continued improvements in extreme adaptive optics, the case becomes increasingly compelling. The joint issue of JOSA B and Applied Optics features more than 20 state-of-the-art papers in diverse areas of astrophotonics. This introduction provides a summary of the papers that cover several important topics, such as photonic lanterns, beam combiners and interferometry, spectrographs, OH suppression, and coronagraphy.

8.
Opt Express ; 29(13): 20765-20775, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266158

RESUMO

We demonstrate the use of ultrafast laser pulses to precisely ablate the side of polymer multicore optical fibres (MCF) in such a way that light is efficiently coupled out of a set of MCF cores to free space. By individually exciting sets of MCF cores, this flexible "micro-window" technology allows the controllable generation of light sources at multiple independently selectable locations along the MCF. We found that the maximum fraction of light that could be side coupled from the MCF varied between 55% and 73%.

9.
J Biophotonics ; 14(10): e202000488, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33855811

RESUMO

Using the shifted-excitation Raman difference spectroscopy technique and an optical fibre featuring a negative curvature excitation core and a coaxial ring of high numerical aperture collection cores, we have developed a portable, background and fluorescence free, endoscopic Raman probe. The probe consists of a single fibre with a diameter of less than 0.25 mm packaged in a sub-millimetre tubing, making it compatible with standard bronchoscopes. The Raman excitation light in the fibre is guided in air and therefore interacts little with silica, enabling an almost background free transmission of the excitation light. In addition, we used the shifted-excitation Raman difference spectroscopy technique and a tunable 785 nm laser to separate the fluorescence and the Raman spectrum from highly fluorescent samples, demonstrating the suitability of the probe for biomedical applications. Using this probe we also acquired fluorescence free human lung tissue data.


Assuntos
Corantes Fluorescentes , Análise Espectral Raman , Humanos , Dióxido de Silício
10.
Eur Respir J ; 57(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33060152

RESUMO

Solitary pulmonary nodules (SPNs) are a clinical challenge, given there is no single clinical sign or radiological feature that definitively identifies a benign from a malignant SPN. The early detection of lung cancer has a huge impact on survival outcome. Consequently, there is great interest in the prompt diagnosis, and treatment of malignant SPNs. Current diagnostic pathways involve endobronchial/transthoracic tissue biopsies or radiological surveillance, which can be associated with suboptimal diagnostic yield, healthcare costs and patient anxiety. Cutting-edge technologies are needed to disrupt and improve, existing care pathways. Optical fibre-based techniques, which can be delivered via the working channel of a bronchoscope or via transthoracic needle, may deliver advanced diagnostic capabilities in patients with SPNs. Optical endomicroscopy, an autofluorescence-based imaging technique, demonstrates abnormal alveolar structure in SPNs in vivo Alternative optical fingerprinting approaches, such as time-resolved fluorescence spectroscopy and fluorescence-lifetime imaging microscopy, have shown promise in discriminating lung cancer from surrounding healthy tissue. Whilst fibre-based Raman spectroscopy has enabled real-time characterisation of SPNs in vivo Fibre-based technologies have the potential to enable in situ characterisation and real-time microscopic imaging of SPNs, which could aid immediate treatment decisions in patients with SPNs. This review discusses advances in current imaging modalities for evaluating SPNs, including computed tomography (CT) and positron emission tomography-CT. It explores the emergence of optical fibre-based technologies, and discusses their potential role in patients with SPNs and suspected lung cancer.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Fibras Ópticas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X
11.
Nat Commun ; 11(1): 5217, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060608

RESUMO

The thin and flexible nature of optical fibres often makes them the ideal technology to view biological processes in-vivo, but current microendoscopic approaches are limited in spatial resolution. Here, we demonstrate a route to high resolution microendoscopy using a multicore fibre (MCF) with an adiabatic multimode-to-single-mode "photonic lantern" transition formed at the distal end by tapering. We show that distinct multimode patterns of light can be projected from the output of the lantern by individually exciting the single-mode MCF cores, and that these patterns are highly stable to fibre movement. This capability is then exploited to demonstrate a form of single-pixel imaging, where a single pixel detector is used to detect the fraction of light transmitted through the object for each multimode pattern. A custom computational imaging algorithm we call SARA-COIL is used to reconstruct the object using only the pre-measured multimode patterns themselves and the detector signals.

12.
Opt Express ; 28(17): 25491-25501, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907069

RESUMO

Hollow core negative curvature fibres (NCFs) are a relatively new class of microstructured optical fibre with potential applications in areas such as the delivery of high power laser light and gas sensing. For sensing, it is necessary for the measurand to interact with the guided mode. To facilitate this, a novel femtosecond laser-based machining protocol has been developed that allows the precision sculpting of access slots into the NCF core along the length of the fibre. The process is a direct-write process using a digitally defined scanning strategy with no need for physical masks or additional processing such as wet etchants and/or focussed ion beam machining. Due to the inherent flexibility of the machining strategy and the high level of control over the depth of material removal, it is likely that this new technique will be transferable to a wide range of microstructured fibres.

13.
Opt Lett ; 45(10): 2716-2719, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32412449

RESUMO

A robust method to selectively attach specific fluorophores onto the individual cores of a multicore fiber is reported in this Letter. The method is based on the use of ultrafast laser pulses to nanostructure the facet of the fiber core, followed by amine functionalization and sensor conjugation. This surface-machining protocol not only enables precise spatial selectivity, but it also facilitates high deposition densities of the sensor moieties. As a proof of concept, the successful deposition of three different fluorophores onto selected cores of a multicore fiber is demonstrated. The protocol was developed to include attachment of a fluorescence-based pH sensor using the ratiometric carboxynapthofluorescein.

14.
Micromachines (Basel) ; 11(2)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053957

RESUMO

Optical biopsy describes a range of medical procedures in which light is used to investigate disease in the body, often in hard-to-reach regions via optical fibres. Optical biopsies can reveal a multitude of diagnostic information to aid therapeutic diagnosis and treatment with higher specificity and shorter delay than traditional surgical techniques. One specific type of optical biopsy relies on Raman spectroscopy to differentiate tissue types at the molecular level and has been used successfully to stage cancer. However, complex micro-optical systems are usually needed at the distal end to optimise the signal-to-noise properties of the Raman signal collected. Manufacturing these devices, particularly in a way suitable for large scale adoption, remains a critical challenge. In this paper, we describe a novel fibre-fed micro-optic system designed for efficient signal delivery and collection during a Raman spectroscopy-based optical biopsy. Crucially, we fabricate the device using a direct-laser-writing technique known as ultrafast laser-assisted etching which is scalable and allows components to be aligned passively. The Raman probe has a sub-millimetre diameter and offers confocal signal collection with 71.3% ± 1.5% collection efficiency over a 0.8 numerical aperture. Proof of concept spectral measurements were performed on mouse intestinal tissue and compared with results obtained using a commercial Raman microscope.

15.
Opt Express ; 27(22): 31713-31726, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684398

RESUMO

Propagation losses in transmission media limit the transmission distance of optical signals. In the case where the signal is made up of quantum optical states, conventional deterministic optical amplification schemes cannot be used to increase the transmission distance as the copying of an arbitrary and unknown quantum state is forbidden. One strategy that can offset propagation loss is the use of probabilistic, or non-deterministic, amplification schemes - an example of which is the state comparison amplifier. Here we report a state comparison amplifier implemented in a compact, fiber-coupled femtosecond laser-written waveguide chip as opposed to the large, bulk-optical components of previous designs. This pathfinder on-chip implementation of the quantum amplifier has resulted in several performance improvements: the polarization integrity of the written waveguides has resulted in improved visibility of the amplifier interferometers; the potential of substantially-reduced losses throughout the amplifier configuration; and a more compact and environmentally-stable amplifier which is scalable to more complex networks.

16.
Biomed Opt Express ; 10(4): 1856-1869, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31086708

RESUMO

Fibre-based optical endomicroscopy (OEM) permits high resolution fluorescence microscopy in endoscopically accessible tissues. Fibred OEM has the potential to visualise pathologies targeted with fluorescent imaging probes and provide an in vivo in situ molecular pathology platform to augment disease understanding, diagnosis and stratification. Here we present an inexpensive widefield ratiometric fibred OEM system capable of enhancing the contrast between similar spectra of pathologically relevant fluorescent signals without the burden of complex spectral unmixing. As an exemplar, we demonstrate the potential of the platform to detect fluorescently labelled Gram-negative bacteria in the challenging environment of highly autofluorescent lung tissue in whole ex vivo human lungs.

17.
Sci Rep ; 9(1): 7713, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118459

RESUMO

Physiological sensing deep in tissue remains a clinical challenge. Here a flexible miniaturised sensing optrode providing a platform to perform minimally invasive in vivo in situ measurements is reported. Silica microspheres covalently coupled with a high density of ratiometrically configured fluorophores were deposited into etched pits on the distal end of a 150 µm diameter multicore optical fibre. With this platform, photonic measurements of pH and oxygen concentration with high precision in the distal alveolar space of the lung are reported. We demonstrated the phenomenon that high-density deposition of carboxyfluorescein covalently coupled to silica microspheres shows an inverse shift in fluorescence in response to varying pH. This platform delivered fast and accurate measurements (±0.02 pH units and ±0.6 mg/L of oxygen), near instantaneous response time and a flexible architecture for addition of multiple sensors.


Assuntos
Tecnologia de Fibra Óptica/métodos , Fibras Ópticas , Alvéolos Pulmonares/diagnóstico por imagem , Animais , Broncoscopia , Feminino , Fluoresceínas/análise , Corantes Fluorescentes/análise , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Microesferas , Miniaturização , Oxigênio , Rodaminas/análise , Ovinos , Dióxido de Silício
18.
Biomed Opt Express ; 10(1): 181-195, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30775092

RESUMO

We present a dual-color laser scanning endomicroscope capable of fluorescence lifetime endomicroscopy at one frame per second (FPS). The scanning system uses a coherent imaging fiber with 30,000 cores. High-speed lifetime imaging is achieved by distributing the signal over an array of 1024 parallel single-photon avalanche diode detectors (SPADs), minimizing detection dead-time maximizing the number of photons detected per excitation pulse without photon pile-up to achieve the high frame rate. This also enables dual color fluorescence imaging by temporally shifting the dual excitation lasers, with respect to each other, to separate the two spectrally distinct fluorescent decays in time. Combining the temporal encoding, to provide spectral separation, with lifetime measurements we show a one FPS, multi-channel endomicroscopy platform for clinical applications and diagnosis. We demonstrate the potential of the system by imaging SmartProbe labeled bacteria in ex vivo samples of human lung using lifetime to differentiate bacterial fluorescence from the strong background lung autofluorescence which was used to provide structural information.

19.
Opt Express ; 26(19): 24343-24356, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469555

RESUMO

Ultrafast laser assisted etching (ULAE) in fused silica is an attractive technology for fabricating three-dimensional micro-components. ULAE is a two-step process whereby ultrafast laser inscription (ULI) is first used to modify the substrate material and chemical etching is then used to remove the laser modified material. In this paper, we present a detailed investigation into how the ULI parameters affect the etching rate of laser modified channels and planar surfaces written in fused silica. Recently, potassium hydroxide (KOH) has shown potential to outperform the more commonly used hydrofluoric acid (HF) as a highly selective etchant for ULAE. Here we perform a detailed comparison of HF and KOH etching after laser inscription with a wide range of ultrafast laser irradiation parameters. Etching with KOH is found to be significantly more selective, removing the laser modified material up to 955 times faster than pristine material, compared with up to 66 when using HF. Maximum etching rates for the two etchants were comparable at 320 µm/hour and 363 µm/hour for HF and KOH respectively. We further demonstrate that highly selective, isotropic etching of non-planar surfaces can be achieved by controlling the polarization state of the laser dynamically during laser inscription.

20.
Nat Commun ; 9(1): 4209, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310062

RESUMO

Photonic lattices-arrays of optical waveguides-are powerful platforms for simulating a range of phenomena, including topological phases. While probing dynamics is possible in these systems, by reinterpreting the propagation direction as time, accessing long timescales constitutes a severe experimental challenge. Here, we overcome this limitation by placing the photonic lattice in a cavity, which allows the optical state to evolve through the lattice multiple times. The accompanying detection method, which exploits a multi-pixel single-photon detector array, offers quasi-real time-resolved measurements after each round trip. We apply the state-recycling scheme to intriguing photonic lattices emulating Dirac fermions and Floquet topological phases. We also realise a synthetic pulsed electric field, which can be used to drive transport within photonic lattices. This work opens an exciting route towards the detection of long timescale effects in engineered photonic lattices and the realisation of hybrid analogue-digital simulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...