Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(W1): W392-W397, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35524575

RESUMO

Proteins are essential macromolecules for the maintenance of living systems. Many of them perform their function by interacting with other molecules in regions called binding sites. The identification and characterization of these regions are of fundamental importance to determine protein function, being a fundamental step in processes such as drug design and discovery. However, identifying such binding regions is not trivial due to the drawbacks of experimental methods, which are costly and time-consuming. Here we propose GRaSP-web, a web server that uses GRaSP (Graph-based Residue neighborhood Strategy to Predict binding sites), a residue-centric method based on graphs that uses machine learning to predict putative ligand binding site residues. The method outperformed 6 state-of-the-art residue-centric methods (MCC of 0.61). Also, GRaSP-web is scalable as it takes 10-20 seconds to predict binding sites for a protein complex (the state-of-the-art residue-centric method takes 2-5h on the average). It proved to be consistent in predicting binding sites for bound/unbound structures (MCC 0.61 for both) and for a large dataset of multi-chain proteins (4500 entries, MCC 0.61). GRaSPWeb is freely available at https://grasp.ufv.br.


Assuntos
Aprendizado de Máquina , Proteínas , Proteínas/química , Sítios de Ligação , Ligantes , Domínios Proteicos , Ligação Proteica
2.
Front Mol Biosci ; 8: 636562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222328

RESUMO

The prediction of peptide binders to Major Histocompatibility Complex (MHC) class II receptors is of great interest to study autoimmune diseases and for vaccine development. Most approaches predict the affinities using sequence-based models trained on experimental data and multiple alignments from known peptide substrates. However, detecting activity differences caused by single-point mutations is a challenging task. In this work, we used interactions calculated from simulations to build scoring matrices for quickly estimating binding differences by single-point mutations. We modelled a set of 837 peptides bound to an MHC class II allele, and optimized the sampling of the conformations using the Rosetta backrub method by comparing the results to molecular dynamics simulations. From the dynamic trajectories of each complex, we averaged and compared structural observables for each amino acid at each position of the 9°mer peptide core region. With this information, we generated the scoring-matrices to predict the sign of the binding differences. We then compared the performance of the best scoring-matrix to different computational methodologies that range in computational costs. Overall, the prediction of the activity differences caused by single mutated peptides was lower than 60% for all the methods. However, the developed scoring-matrix in combination with existing methods reports an increase in the performance, up to 86% with a scoring method that uses molecular dynamics.

3.
BMC Bioinformatics ; 21(1): 586, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33375946

RESUMO

BACKGROUND: Proteases are key drivers in many biological processes, in part due to their specificity towards their substrates. However, depending on the family and molecular function, they can also display substrate promiscuity which can also be essential. Databases compiling specificity matrices derived from experimental assays have provided valuable insights into protease substrate recognition. Despite this, there are still gaps in our knowledge of the structural determinants. Here, we compile a set of protease crystal structures with bound peptide-like ligands to create a protocol for modelling substrates bound to protease structures, and for studying observables associated to the binding recognition. RESULTS: As an application, we modelled a subset of protease-peptide complexes for which experimental cleavage data are available to compare with informational entropies obtained from protease-specificity matrices. The modelled complexes were subjected to conformational sampling using the Backrub method in Rosetta, and multiple observables from the simulations were calculated and compared per peptide position. We found that some of the calculated structural observables, such as the relative accessible surface area and the interaction energy, can help characterize a protease's substrate recognition, giving insights for the potential prediction of novel substrates by combining additional approaches. CONCLUSION: Overall, our approach provides a repository of protease structures with annotated data, and an open source computational protocol to reproduce the modelling and dynamic analysis of the protease-peptide complexes.


Assuntos
Modelos Moleculares , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Automação , Ligantes , Peptídeo Hidrolases/química , Conformação Proteica , Software , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA