Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(S1): S4-S39, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498816

RESUMO

The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.


Assuntos
Exobiologia , Estudantes , Humanos , Exobiologia/educação
2.
Astrobiology ; 24(S1): S40-S56, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498820

RESUMO

The question "What is life?" has existed since the beginning of recorded history. However, the scientific and philosophical contexts of this question have changed and been refined as advancements in technology have revealed both fine details and broad connections in the network of life on Earth. Understanding the framework of the question "What is life?" is central to formulating other questions such as "Where else could life be?" and "How do we search for life elsewhere?" While many of these questions are addressed throughout the Astrobiology Primer 3.0, this chapter gives historical context for defining life, highlights conceptual characteristics shared by all life on Earth as well as key features used to describe it, discusses why it matters for astrobiology, and explores both challenges and opportunities for finding an informative operational definition.


Assuntos
Planeta Terra , Exobiologia , Projetos de Pesquisa
3.
Astrobiology ; 24(S1): S124-S142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498824

RESUMO

Scientific ideas about the potential existence of life elsewhere in the universe are predominantly informed by knowledge about life on Earth. Over the past ∼4 billion years, life on Earth has evolved into millions of unique species. Life now inhabits nearly every environmental niche on Earth that has been explored. Despite the wide variety of species and diverse biochemistry of modern life, many features, such as energy production mechanisms and nutrient requirements, are conserved across the Tree of Life. Such conserved features help define the operational parameters required by life and therefore help direct the exploration and evaluation of habitability in extraterrestrial environments. As new diversity in the Tree of Life continues to expand, so do the known limits of life on Earth and the range of environments considered habitable elsewhere. The metabolic processes used by organisms living on the edge of habitability provide insights into the types of environments that would be most suitable to hosting extraterrestrial life, crucial for planning and developing future astrobiology missions. This chapter will introduce readers to the breadth and limits of life on Earth and show how the study of life at the extremes can inform the broader field of astrobiology.


Assuntos
Planeta Terra , Meio Ambiente Extraterreno , Exobiologia
4.
ISME J ; 15(6): 1569-1584, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33452481

RESUMO

Temperate phages are viruses of bacteria that can establish two types of infection: a lysogenic infection in which the virus replicates with the host cell without producing virions, and a lytic infection where the host cell is eventually destroyed, and new virions are released. While both lytic and lysogenic infections are routinely observed in the environment, the ecological and evolutionary processes regulating these viral dynamics are still not well understood, especially for uncultivated virus-host pairs. Here, we characterized the long-term dynamics of uncultivated viruses infecting green sulfur bacteria (GSB) in a model freshwater lake (Trout Bog Lake, TBL). As no GSB virus has been formally described yet, we first used two complementary approaches to identify new GSB viruses from TBL; one in vitro based on flow cytometry cell sorting, the other in silico based on CRISPR spacer sequences. We then took advantage of existing TBL metagenomes covering the 2005-2018 period to examine the interactions between GSB and their viruses across years and seasons. From our data, GSB populations in TBL were constantly associated with at least 2-8 viruses each, including both lytic and temperate phages. The dominant GSB population in particular was consistently associated with two prophages with a nearly 100% infection rate for >10 years. We illustrate with a theoretical model that such an interaction can be stable given a low, but persistent, level of prophage induction in low-diversity host populations. Overall, our data suggest that lytic and lysogenic viruses can readily co-infect the same host population, and that host strain-level diversity might be an important factor controlling virus-host dynamics including lytic/lysogeny switch.


Assuntos
Bacteriófagos , Chlorobi , Viroses , Bacteriófagos/genética , Humanos , Lisogenia , Prófagos
5.
J Biol Chem ; 293(39): 15233-15242, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30126840

RESUMO

Chlorobaculum tepidum, a green sulfur bacterium, utilizes chlorobactene as its major carotenoid, and this organism also accumulates a reduced form of this monocyclic pigment, 1',2'-dihydrochlorobactene. The protein catalyzing this reduction is the last unidentified enzyme in the biosynthetic pathways for all of the green sulfur bacterial pigments used for photosynthesis. The genome of C. tepidum contains two paralogous genes encoding members of the FixC family of flavoproteins: bchP, which has been shown to encode an enzyme of bacteriochlorophyll biosynthesis; and bchO, for which a function has not been assigned. Here we demonstrate that a bchO mutant is unable to synthesize 1',2'-dihydrochlorobactene, and when bchO is heterologously expressed in a neurosporene-producing mutant of the purple bacterium, Rhodobacter sphaeroides, the encoded protein is able to catalyze the formation of 1,2-dihydroneurosporene, the major carotenoid of the only other organism reported to synthesize 1,2-dihydrocarotenoids, Blastochloris viridis Identification of this enzyme completes the pathways for the synthesis of photosynthetic pigments in Chlorobiaceae, and accordingly and consistent with its role in carotenoid biosynthesis, we propose to rename the gene cruI Notably, the absence of cruI in B. viridis indicates that a second 1,2-carotenoid reductase, which is structurally unrelated to CruI (BchO), must exist in nature. The evolution of this carotenoid reductase in green sulfur bacteria is discussed herein.


Assuntos
Bacterioclorofilas/biossíntese , Carotenoides/biossíntese , Chlorobi/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacterioclorofilas/química , Bacterioclorofilas/genética , Vias Biossintéticas/genética , Carotenoides/química , Carotenoides/genética , Carotenoides/metabolismo , Chlorobi/química , Chlorobium/enzimologia , Chlorobium/genética , Genoma Bacteriano/genética , Oxirredutases/química , Oxirredutases/genética , Fotossíntese/genética
6.
J Biol Chem ; 292(4): 1361-1373, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27994052

RESUMO

Green bacteria are chlorophotorophs that synthesize bacteriochlorophyll (BChl) c, d, or e, which assemble into supramolecular, nanotubular structures in large light-harvesting structures called chlorosomes. The biosynthetic pathways of these chlorophylls are known except for one reaction. Null mutants of bciD, which encodes a putative radical S-adenosyl-l-methionine (SAM) protein, are unable to synthesize BChl e but accumulate BChl c; however, it is unknown whether BciD is sufficient to convert BChl c (or its precursor, bacteriochlorophyllide (BChlide) c) into BChl e (or BChlide e). To determine the function of BciD, we expressed the bciD gene of Chlorobaculum limnaeum strain DSMZ 1677T in Escherichia coli and purified the enzyme under anoxic conditions. Electron paramagnetic resonance spectroscopy of BciD indicated that it contains a single [4Fe-4S] cluster. In assays containing SAM, BChlide c or d, and sodium dithionite, BciD catalyzed the conversion of SAM into 5'-deoxyadenosine and BChlide c or d into BChlide e or f, respectively. Our analyses also identified intermediates that are proposed to be 71-OH-BChlide c and d Thus, BciD is a radical SAM enzyme that converts the methyl group of BChlide c or d into the formyl group of BChlide e or f This probably occurs by a mechanism involving consecutive hydroxylation reactions of the C-7 methyl group to form a geminal diol intermediate, which spontaneously dehydrates to produce the final products, BChlide e or BChlide f The demonstration that BciD is sufficient to catalyze the conversion of BChlide c into BChlide e completes the biosynthetic pathways for all "Chlorobium chlorophylls."


Assuntos
Proteínas de Bactérias/metabolismo , Bacterioclorofilas/biossíntese , Chlorobi/enzimologia , Proteínas Ferro-Enxofre/metabolismo , Metionina Adenosiltransferase/metabolismo , Proteínas de Bactérias/genética , Bacterioclorofilas/genética , Chlorobi/genética , Proteínas Ferro-Enxofre/genética , Metionina Adenosiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...