Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Eur J Epidemiol ; 35(2): 157-168, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32100173

RESUMO

Epidemiological research has shown there to be a strong relationship between preconceptional, prenatal, birth and early-life factors and lifelong health. The Lifelines NEXT is a birth cohort designed to study the effects of intrinsic and extrinsic determinants on health and disease in a four-generation design. It is embedded within the Lifelines cohort study, a prospective three-generation population-based cohort study recording the health and health-related aspects of 167,729 individuals living in Northern Netherlands. In Lifelines NEXT we aim to include 1500 pregnant Lifelines participants and intensively follow them, their partners and their children until at least 1 year after birth. Longer-term follow-up of physical and psychological health will then be embedded following Lifelines procedures. During the Lifelines NEXT study period biomaterials-including maternal and neonatal (cord) blood, placental tissue, feces, breast milk, nasal swabs and urine-will be collected from the mother and child at 10 time points. We will also collect data on medical, social, lifestyle and environmental factors via questionnaires at 14 different time points and continuous data via connected devices. The extensive collection of different (bio)materials from mother and child during pregnancy and afterwards will provide the means to relate environmental factors including maternal and neonatal microbiome composition) to (epi)genetics, health and developmental outcomes. The nesting of the study within Lifelines enables us to include preconceptional transgenerational data and can be used to identify other extended families within the cohort.


Assuntos
Envelhecimento , Bancos de Espécimes Biológicos , Mães , Vigilância da População , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Sangue Fetal , Humanos , Lactente , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Leite Humano , Países Baixos , Placenta , Gravidez , Estudos Prospectivos , Sistema de Registros , Inquéritos e Questionários
2.
Nat Microbiol ; 4(4): 623-632, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718848

RESUMO

The relationship between gut microbial metabolism and mental health is one of the most intriguing and controversial topics in microbiome research. Bidirectional microbiota-gut-brain communication has mostly been explored in animal models, with human research lagging behind. Large-scale metagenomics studies could facilitate the translational process, but their interpretation is hampered by a lack of dedicated reference databases and tools to study the microbial neuroactive potential. Surveying a large microbiome population cohort (Flemish Gut Flora Project, n = 1,054) with validation in independent data sets (ntotal = 1,070), we studied how microbiome features correlate with host quality of life and depression. Butyrate-producing Faecalibacterium and Coprococcus bacteria were consistently associated with higher quality of life indicators. Together with Dialister, Coprococcus spp. were also depleted in depression, even after correcting for the confounding effects of antidepressants. Using a module-based analytical framework, we assembled a catalogue of neuroactive potential of sequenced gut prokaryotes. Gut-brain module analysis of faecal metagenomes identified the microbial synthesis potential of the dopamine metabolite 3,4-dihydroxyphenylacetic acid as correlating positively with mental quality of life and indicated a potential role of microbial γ-aminobutyric acid production in depression. Our results provide population-scale evidence for microbiome links to mental health, while emphasizing confounder importance.


Assuntos
Bactérias/isolamento & purificação , Depressão/microbiologia , Microbioma Gastrointestinal , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Estudos de Coortes , Depressão/metabolismo , Depressão/psicologia , Dopamina/metabolismo , Fezes/microbiologia , Feminino , Humanos , Intestinos/microbiologia , Masculino , Pessoa de Meia-Idade , Qualidade de Vida
3.
Sci Transl Med ; 10(472)2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30567928

RESUMO

Changes in the gut microbiota have been associated with two of the most common gastrointestinal diseases, inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Here, we performed a case-control analysis using shotgun metagenomic sequencing of stool samples from 1792 individuals with IBD and IBS compared with control individuals in the general population. Despite substantial overlap between the gut microbiome of patients with IBD and IBS compared with control individuals, we were able to use gut microbiota composition differences to distinguish patients with IBD from those with IBS. By combining species-level profiles and strain-level profiles with bacterial growth rates, metabolic functions, antibiotic resistance, and virulence factor analyses, we identified key bacterial species that may be involved in two common gastrointestinal diseases.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Síndrome do Intestino Irritável/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/patogenicidade , Biodiversidade , Estudos de Casos e Controles , Resistência Microbiana a Medicamentos , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Metagenoma , Modelos Biológicos , Fenótipo , Análise de Componente Principal , Curva ROC , Especificidade da Espécie , Virulência
5.
Nat Genet ; 49(1): 139-145, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27918533

RESUMO

Genetic risk factors often localize to noncoding regions of the genome with unknown effects on disease etiology. Expression quantitative trait loci (eQTLs) help to explain the regulatory mechanisms underlying these genetic associations. Knowledge of the context that determines the nature and strength of eQTLs may help identify cell types relevant to pathophysiology and the regulatory networks underlying disease. Here we generated peripheral blood RNA-seq data from 2,116 unrelated individuals and systematically identified context-dependent eQTLs using a hypothesis-free strategy that does not require previous knowledge of the identity of the modifiers. Of the 23,060 significant cis-regulated genes (false discovery rate (FDR) ≤ 0.05), 2,743 (12%) showed context-dependent eQTL effects. The majority of these effects were influenced by cell type composition. A set of 145 cis-eQTLs depended on type I interferon signaling. Others were modulated by specific transcription factors binding to the eQTL SNPs.


Assuntos
Proteínas Sanguíneas/genética , Linhagem da Célula/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , RNA Mensageiro/sangue , Sequências Reguladoras de Ácido Nucleico/genética , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética
6.
Nat Genet ; 49(1): 131-138, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27918535

RESUMO

Most disease-associated genetic variants are noncoding, making it challenging to design experiments to understand their functional consequences. Identification of expression quantitative trait loci (eQTLs) has been a powerful approach to infer the downstream effects of disease-associated variants, but most of these variants remain unexplained. The analysis of DNA methylation, a key component of the epigenome, offers highly complementary data on the regulatory potential of genomic regions. Here we show that disease-associated variants have widespread effects on DNA methylation in trans that likely reflect differential occupancy of trans binding sites by cis-regulated transcription factors. Using multiple omics data sets from 3,841 Dutch individuals, we identified 1,907 established trait-associated SNPs that affect the methylation levels of 10,141 different CpG sites in trans (false discovery rate (FDR) < 0.05). These included SNPs that affect both the expression of a nearby transcription factor (such as NFKB1, CTCF and NKX2-3) and methylation of its respective binding site across the genome. Trans methylation QTLs effectively expose the downstream effects of disease-associated variants.


Assuntos
Metilação de DNA , Doença/genética , Regulação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo , Sítios de Ligação , Estudos de Coortes , Feminino , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
7.
Nat Genet ; 48(11): 1407-1412, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27694959

RESUMO

The gut microbiome is affected by multiple factors, including genetics. In this study, we assessed the influence of host genetics on microbial species, pathways and gene ontology categories, on the basis of metagenomic sequencing in 1,514 subjects. In a genome-wide analysis, we identified associations of 9 loci with microbial taxonomies and 33 loci with microbial pathways and gene ontology terms at P < 5 × 10-8. Additionally, in a targeted analysis of regions involved in complex diseases, innate and adaptive immunity, or food preferences, 32 loci were identified at the suggestive level of P < 5 × 10-6. Most of our reported associations are new, including genome-wide significance for the C-type lectin molecules CLEC4F-CD207 at 2p13.3 and CLEC4A-FAM90A1 at 12p13. We also identified association of a functional LCT SNP with the Bifidobacterium genus (P = 3.45 × 10-8) and provide evidence of a gene-diet interaction in the regulation of Bifidobacterium abundance. Our results demonstrate the importance of understanding host-microbe interactions to gain better insight into human health.


Assuntos
Microbioma Gastrointestinal , Genoma Humano , Adolescente , Adulto , Idoso , Animais , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Humanos , Imunidade/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
8.
Genome Biol ; 17(1): 191, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27654999

RESUMO

BACKGROUND: Epigenetic change is a hallmark of ageing but its link to ageing mechanisms in humans remains poorly understood. While DNA methylation at many CpG sites closely tracks chronological age, DNA methylation changes relevant to biological age are expected to gradually dissociate from chronological age, mirroring the increased heterogeneity in health status at older ages. RESULTS: Here, we report on the large-scale identification of 6366 age-related variably methylated positions (aVMPs) identified in 3295 whole blood DNA methylation profiles, 2044 of which have a matching RNA-seq gene expression profile. aVMPs are enriched at polycomb repressed regions and, accordingly, methylation at those positions is associated with the expression of genes encoding components of polycomb repressive complex 2 (PRC2) in trans. Further analysis revealed trans-associations for 1816 aVMPs with an additional 854 genes. These trans-associated aVMPs are characterized by either an age-related gain of methylation at CpG islands marked by PRC2 or a loss of methylation at enhancers. This distinct pattern extends to other tissues and multiple cancer types. Finally, genes associated with aVMPs in trans whose expression is variably upregulated with age (733 genes) play a key role in DNA repair and apoptosis, whereas downregulated aVMP-associated genes (121 genes) are mapped to defined pathways in cellular metabolism. CONCLUSIONS: Our results link age-related changes in DNA methylation to fundamental mechanisms that are thought to drive human ageing.

9.
Genome Biol ; 17(1): 138, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27350042

RESUMO

BACKGROUND: Cells can be primed by external stimuli to obtain a long-term epigenetic memory. We hypothesize that long-term exposure to elevated blood lipids can prime circulating immune cells through changes in DNA methylation, a process that may contribute to the development of atherosclerosis. To interrogate the causal relationship between triglyceride, low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol levels and genome-wide DNA methylation while excluding confounding and pleiotropy, we perform a stepwise Mendelian randomization analysis in whole blood of 3296 individuals. RESULTS: This analysis shows that differential methylation is the consequence of inter-individual variation in blood lipid levels and not vice versa. Specifically, we observe an effect of triglycerides on DNA methylation at three CpGs, of LDL cholesterol at one CpG, and of HDL cholesterol at two CpGs using multivariable Mendelian randomization. Using RNA-seq data available for a large subset of individuals (N = 2044), DNA methylation of these six CpGs is associated with the expression of CPT1A and SREBF1 (for triglycerides), DHCR24 (for LDL cholesterol) and ABCG1 (for HDL cholesterol), which are all key regulators of lipid metabolism. CONCLUSIONS: Our analysis suggests a role for epigenetic priming in end-product feedback control of lipid metabolism and highlights Mendelian randomization as an effective tool to infer causal relationships in integrative genomics data.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Regulação da Expressão Gênica/genética , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/sangue , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carnitina O-Palmitoiltransferase/sangue , Carnitina O-Palmitoiltransferase/genética , HDL-Colesterol/sangue , HDL-Colesterol/genética , LDL-Colesterol/sangue , LDL-Colesterol/genética , Ilhas de CpG/genética , Feminino , Genoma Humano , Humanos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/sangue , Proteínas do Tecido Nervoso/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/sangue , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/sangue , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triglicerídeos/sangue , Triglicerídeos/genética
10.
Sci Rep ; 6: 26420, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27263852

RESUMO

Biological markers that measure gut health and diagnose functional gastro-intestinal (GI) disorders, such as irritable bowel syndrome (IBS), are lacking. The objective was to identify and validate a biomarker panel associated with the pathophysiology of IBS that discriminates IBS from healthy controls (HC), and correlates with GI symptom severity. In a case-control design, various plasma and fecal markers were measured in a cohort of 196 clinical IBS patients and 160 HC without GI symptoms. A combination of biomarkers, which best discriminates between IBS and HC was identified and validated in an independent internal validation set and by permutation testing. The correlation between the biomarker panel and GI symptom severity was tested in IBS patients and in a general population cohort of 958 subjects. A set of 8 biomarker panel was identified to discriminate IBS from HC with high sensitivity (88.1%) and specificity (86.5%). The results for the IBS subtypes were comparable. Moreover, a moderate correlation was found between the biomarker panel and GI symptom scores in the IBS (r = 0.59, p < 0.001) and the general population cohorts (r = 0.51, p = 0.003). A novel multi-domain biomarker panel has been identified and validated, which correlated moderately to GI symptom severity in IBS and general population subjects.


Assuntos
Síndrome do Intestino Irritável/diagnóstico , Adulto , Área Sob a Curva , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Síndrome do Intestino Irritável/sangue , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Curva ROC , Adulto Jovem
11.
Science ; 352(6285): 560-4, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27126039

RESUMO

Fecal microbiome variation in the average, healthy population has remained under-investigated. Here, we analyzed two independent, extensively phenotyped cohorts: the Belgian Flemish Gut Flora Project (FGFP; discovery cohort; N = 1106) and the Dutch LifeLines-DEEP study (LLDeep; replication; N = 1135). Integration with global data sets (N combined = 3948) revealed a 14-genera core microbiota, but the 664 identified genera still underexplore total gut diversity. Sixty-nine clinical and questionnaire-based covariates were found associated to microbiota compositional variation with a 92% replication rate. Stool consistency showed the largest effect size, whereas medication explained largest total variance and interacted with other covariate-microbiota associations. Early-life events such as birth mode were not reflected in adult microbiota composition. Finally, we found that proposed disease marker genera associated to host covariates, urging inclusion of the latter in study design.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal , Bactérias/genética , Bactérias/isolamento & purificação , Bélgica , Estudos de Coortes , Interações Medicamentosas , Fezes/microbiologia , Humanos
12.
Science ; 352(6285): 565-9, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27126040

RESUMO

Deep sequencing of the gut microbiomes of 1135 participants from a Dutch population-based cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors, including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60 dietary factors. These factors collectively explain 18.7% of the variation seen in the interindividual distance of microbial composition. We could associate 110 factors to 125 species and observed that fecal chromogranin A (CgA), a protein secreted by enteroendocrine cells, was exclusively associated with 61 microbial species whose abundance collectively accounted for 53% of microbial composition. Low CgA concentrations were seen in individuals with a more diverse microbiome. These results are an important step toward a better understanding of environment-diet-microbe-host interactions.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Cromogranina A/análise , Cromogranina A/metabolismo , Dieta , Células Enteroendócrinas/metabolismo , Fezes/química , Fezes/microbiologia , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica , Países Baixos , Filogenia , RNA Ribossômico 16S/genética
13.
Genome Med ; 8(1): 45, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27102333

RESUMO

BACKGROUND: A gluten-free diet (GFD) is the most commonly adopted special diet worldwide. It is an effective treatment for coeliac disease and is also often followed by individuals to alleviate gastrointestinal complaints. It is known there is an important link between diet and the gut microbiome, but it is largely unknown how a switch to a GFD affects the human gut microbiome. METHODS: We studied changes in the gut microbiomes of 21 healthy volunteers who followed a GFD for four weeks. We collected nine stool samples from each participant: one at baseline, four during the GFD period, and four when they returned to their habitual diet (HD), making a total of 189 samples. We determined microbiome profiles using 16S rRNA sequencing and then processed the samples for taxonomic and imputed functional composition. Additionally, in all 189 samples, six gut health-related biomarkers were measured. RESULTS: Inter-individual variation in the gut microbiota remained stable during this short-term GFD intervention. A number of taxon-specific differences were seen during the GFD: the most striking shift was seen for the family Veillonellaceae (class Clostridia), which was significantly reduced during the intervention (p = 2.81 × 10(-05)). Seven other taxa also showed significant changes; the majority of them are known to play a role in starch metabolism. We saw stronger differences in pathway activities: 21 predicted pathway activity scores showed significant association to the change in diet. We observed strong relations between the predicted activity of pathways and biomarker measurements. CONCLUSIONS: A GFD changes the gut microbiome composition and alters the activity of microbial pathways.


Assuntos
Dieta Livre de Glúten , Microbioma Gastrointestinal , Adolescente , Adulto , Biodiversidade , Biomarcadores , Ingestão de Alimentos , Feminino , Glutens , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
14.
Gut ; 65(5): 740-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26657899

RESUMO

BACKGROUND AND AIMS: Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or promoting colonisation by pathogens. In this study, we investigated the influence of PPI use on the gut microbiome. METHODS: The gut microbiome composition of 1815 individuals, spanning three cohorts, was assessed by tag sequencing of the 16S rRNA gene. The difference in microbiota composition in PPI users versus non-users was analysed separately in each cohort, followed by a meta-analysis. RESULTS: 211 of the participants were using PPIs at the moment of stool sampling. PPI use is associated with a significant decrease in Shannon's diversity and with changes in 20% of the bacterial taxa (false discovery rate <0.05). Multiple oral bacteria were over-represented in the faecal microbiome of PPI-users, including the genus Rothia (p=9.8×10(-38)). In PPI users we observed a significant increase in bacteria: genera Enterococcus, Streptococcus, Staphylococcus and the potentially pathogenic species Escherichia coli. CONCLUSIONS: The differences between PPI users and non-users observed in this study are consistently associated with changes towards a less healthy gut microbiome. These differences are in line with known changes that predispose to C. difficile infections and can potentially explain the increased risk of enteric infections in PPI users. On a population level, the effects of PPI are more prominent than the effects of antibiotics or other commonly used drugs.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores da Bomba de Prótons/farmacologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Circ Res ; 117(9): 817-24, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26358192

RESUMO

RATIONALE: Evidence suggests that the gut microbiome is involved in the development of cardiovascular disease, with the host-microbe interaction regulating immune and metabolic pathways. However, there was no firm evidence for associations between microbiota and metabolic risk factors for cardiovascular disease from large-scale studies in humans. In particular, there was no strong evidence for association between cardiovascular disease and aberrant blood lipid levels. OBJECTIVES: To identify intestinal bacteria taxa, whose proportions correlate with body mass index and lipid levels, and to determine whether lipid variance can be explained by microbiota relative to age, sex, and host genetics. METHODS AND RESULTS: We studied 893 subjects from the Life-Lines-DEEP population cohort. After correcting for age and sex, we identified 34 bacterial taxa associated with body mass index and blood lipids; most are novel associations. Cross-validation analysis revealed that microbiota explain 4.5% of the variance in body mass index, 6% in triglycerides, and 4% in high-density lipoproteins, independent of age, sex, and genetic risk factors. A novel risk model, including the gut microbiome explained ≤ 25.9% of high-density lipoprotein variance, significantly outperforming the risk model without microbiome. Strikingly, the microbiome had little effect on low-density lipoproteins or total cholesterol. CONCLUSIONS: Our studies suggest that the gut microbiome may play an important role in the variation in body mass index and blood lipid levels, independent of age, sex, and host genetics. Our findings support the potential of therapies altering the gut microbiome to control body mass, triglycerides, and high-density lipoproteins.


Assuntos
Índice de Massa Corporal , Microbioma Gastrointestinal/fisiologia , Lipídeos/sangue , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Bactérias/classificação , Bactérias/genética , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/microbiologia , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos de Coortes , Feminino , Microbioma Gastrointestinal/genética , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Fatores de Risco , Triglicerídeos/sangue , Adulto Jovem
16.
BMJ Open ; 5(8): e006772, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26319774

RESUMO

PURPOSE: There is a critical need for population-based prospective cohort studies because they follow individuals before the onset of disease, allowing for studies that can identify biomarkers and disease-modifying effects, and thereby contributing to systems epidemiology. PARTICIPANTS: This paper describes the design and baseline characteristics of an intensively examined subpopulation of the LifeLines cohort in the Netherlands. In this unique subcohort, LifeLines DEEP, we included 1539 participants aged 18 years and older. FINDINGS TO DATE: We collected additional blood (n = 1387), exhaled air (n = 1425) and faecal samples (n = 1248), and elicited responses to gastrointestinal health questionnaires (n = 1176) for analysis of the genome, epigenome, transcriptome, microbiome, metabolome and other biological levels. Here, we provide an overview of the different data layers in LifeLines DEEP and present baseline characteristics of the study population including food intake and quality of life. We also describe how the LifeLines DEEP cohort allows for the detailed investigation of genetic, genomic and metabolic variation for a wide range of phenotypic outcomes. Finally, we examine the determinants of gastrointestinal health, an area of particular interest to us that can be addressed by LifeLines DEEP. FUTURE PLANS: We have established a cohort of which multiple data levels allow for the integrative analysis of populations for translation of this information into biomarkers for disease, and which will offer new insights into disease mechanisms and prevention.


Assuntos
Monitoramento Epidemiológico , Gastroenteropatias , Variação Genética , Fenótipo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Coleta de Dados , Feminino , Gastroenteropatias/etiologia , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Estudos Prospectivos , Projetos de Pesquisa , Adulto Jovem
17.
Hum Mol Genet ; 24(2): 397-409, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25190711

RESUMO

Although genome-wide association studies and fine mapping have identified 39 non-HLA loci associated with celiac disease (CD), it is difficult to pinpoint the functional variants and susceptibility genes in these loci. We applied integrative approaches to annotate and prioritize functional single nucleotide polymorphisms (SNPs), genes and pathways affected in CD. CD-associated SNPs were intersected with regulatory elements categorized by the ENCODE project to prioritize functional variants, while results from cis-expression quantitative trait loci (eQTL) mapping in 1469 blood samples were combined with co-expression analyses to prioritize causative genes. To identify the key cell types involved in CD, we performed pathway analysis on RNA-sequencing data from different immune cell populations and on publicly available expression data on non-immune tissues. We discovered that CD SNPs are significantly enriched in B-cell-specific enhancer regions, suggesting that, besides T-cell processes, B-cell responses play a major role in CD. By combining eQTL and co-expression analyses, we prioritized 43 susceptibility genes in 36 loci. Pathway and tissue-specific expression analyses on these genes suggested enrichment of CD genes in the Th1, Th2 and Th17 pathways, but also predicted a role for four genes in the intestinal barrier function. We also discovered an intricate transcriptional connectivity between CD susceptibility genes and interferon-γ, a key effector in CD, despite the absence of CD-associated SNPs in the IFNG locus. Using systems biology, we prioritized the CD-associated functional SNPs and genes. By highlighting a role for B cells in CD, which classically has been described as a T-cell-driven disease, we offer new insights into the mechanisms and pathways underlying CD.


Assuntos
Doença Celíaca/genética , Interferon gama/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Doença Celíaca/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Interferon gama/genética , Anotação de Sequência Molecular
18.
Int J Cancer ; 136(10): 2388-401, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25335850

RESUMO

Use of dietary supplements is rising in countries where colorectal cancer is prevalent. We conducted a systematic literature review and meta-analyses of prospective cohort studies on dietary supplement use and colorectal cancer risk. We identified relevant studies in Medline, Embase and Cochrane up to January 2013. Original and peer-reviewed papers on dietary supplement use and colorectal cancer, colon cancer, or rectal cancer incidence were included. "Use-no use"(U-NU), "highest-lowest"(H-L) and "dose-response"(DR) meta-analyses were performed. Random-effects models were used to estimate summary estimates. In total, 24 papers were included in the meta-analyses. We observed inverse associations for colorectal cancer risk and multivitamin (U-NU: RR = 0.92; 95% CI: 0.87,0.97) and calcium supplements (U-NU: RR = 0.86; 95% CI: 0.79,0.95; H-L: RR = 0.80; 95% CI: 0.70,0.92; DR: for an increase of 100 mg/day, RR = 0.96; 95% CI: 0.94,0.99). Inconsistent associations were found for colon cancer risk and supplemental vitamin A and vitamin C, and for colorectal cancer risk and supplemental vitamin D, vitamin E, garlic and folic acid. Meta-analyses of observational studies suggest a beneficial role for multivitamins and calcium supplements on colorectal cancer risk, while the association with other supplements and colorectal cancer risk is inconsistent. Residual confounding of lifestyle factors might be present. Before recommendations can be made, an extensive assessment of dietary supplement use and a better understanding of underlying mechanisms is needed.


Assuntos
Cálcio da Dieta/administração & dosagem , Neoplasias Colorretais/epidemiologia , Suplementos Nutricionais , Vitaminas/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/prevenção & controle , Bases de Dados como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...