Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 58(8): 3010-3018, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34294963

RESUMO

The antimicrobial activities of Baccharis dracunculifolia DC essential oil (EO) and hydroalcoholic extract (HE) were evaluated. The EO showed broad antimicrobial activity and its synergistic combination with nisin was tested. Major components of EO were nerolidol, beta-pinene and D-limonene, while artepillin C, rutin and cafeic acid were major phenolics of HE. EO and HE were tested by agar diffusion assay against several strains of bacteria and yeasts, and mixed cultures of bacterial strains. The EO presented the largest spectrum of antimicrobial activity inhibiting all Gram-positive bacteria tested. Yeasts were not inhibited. The effect of EO against mixtures of sensitive and non-sensitive bacteria was tested on milk agar, being the inhibitory effect only observed on mixtures containing susceptible strains. The combination of EO and nisin at ½ MIC was evaluated on the growth curve of Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Salmonella Enteritidis during 24 h at 37 °C. The combination EO-nisin was effective and no viable counts of B. cereus, L. monocytogenes and S. Enteritidis was observed, while the individual antimicrobials caused no inhibition. The counts of S. aureus were about 4 log CFU/mL lower in comparison with EO or nisin alone. B. dracunculifolia DC may be a potential source of natural antimicrobials, and its synergistic effect with nisin would reduce the working concentration, minimizing the organoleptic effects associated with this plant antimicrobial.

2.
J Proteomics ; 226: 103906, 2020 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-32707233

RESUMO

In this work, a comparative analysis of the peripheral cell component (PCC) proteins of Listeria monocytogenes was carried out. The study was conducted on two set of samples consisting of bacteria treated with sub-lethal concentration of nisin and untreated bacteria as control. PCC proteins were extracted by Tris-Urea-EDTA treatment and then subjected to trypsin digestion and mass spectrometry analysis. The whole cell proteome was analyzed through label-free quantitative proteomics approach. Proteomic analysis was carried out using OrbiTrap Mass Spectrometer coupled to nanoflow liquid chromatography. The treatment with sub-lethal nisin concentration resulted in 62 up regulated and 97 down regulated proteins compared to untreated samples. Using PSORTb 3.0, 19 and 18 surface proteins were detected among the up regulated and down regulated proteins, respectively. Proteins related with increased biofilm formation by L.monocytogenes, such as moonlight proteins of the pyruvate dehydrogenase complex and flagellin-related proteins, were identified as up regulated surface proteins. Proteins associated with virulence of L.monocytogenes, including listeriolysin O, internalin B and actin assembly-inducing protein, were detected among the down regulated proteins. To confirm proteomics data, increased production of biofilm was experimentally confirmed in nisin-treated cells through crystal violet method. BIOLOGICAL SIGNIFICANCE: Proteosurfaceomics can be defined as the "omics" science applied to the proteins of the peripheral cell component (PCC). The surface proteins of Listeria monocytogenes, an important foodborne pathogen were investigated after treatment with nisin, a bacteriocin approved as a natural food preservative by regulatory agencies. Recent cases of nisin tolerance by Listeria spp. were documented, and deeper studies on the molecular process behind the bacterial survival may help in both understanding the development of tolerance process and comparing nisin effect with other antimicrobial compounds.


Assuntos
Listeria monocytogenes , Nisina , Antibacterianos , Proteínas de Membrana , Nisina/farmacologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...