RESUMO
Timely, accurate, and comparative data on human mobility is of paramount importance for epidemic preparedness and response, but generally not available or easily accessible. Mobile phone metadata, typically in the form of Call Detail Records (CDRs), represents a powerful source of information on human movements at an unprecedented scale. In this work, we investigate the potential benefits of harnessing aggregated CDR-derived mobility to predict the 2015-2016 Zika virus (ZIKV) outbreak in Colombia, when compared to other traditional data sources. To simulate the spread of ZIKV at sub-national level in Colombia, we employ a stochastic metapopulation epidemic model for vector-borne diseases. Our model integrates detailed data on the key drivers of ZIKV spread, including the spatial heterogeneity of the mosquito abundance, and the exposure of the population to the virus due to environmental and socio-economic factors. Given the same modelling settings (i.e. initial conditions and epidemiological parameters), we perform in-silico simulations for each mobility network and assess their ability in reproducing the local outbreak as reported by the official surveillance data. We assess the performance of our epidemic modelling approach in capturing the ZIKV outbreak both nationally and sub-nationally. Our model estimates are strongly correlated with the surveillance data at the country level (Pearson's r = 0.92 for the CDR-informed network). Moreover, we found strong performance of the model estimates generated by the CDR-informed mobility networks in reproducing the local outbreak observed at the sub-national level. Compared to the CDR-informed networks, the performance of the other mobility networks is either comparatively similar or substantially lower, with no added value in predicting the local epidemic. This suggests that mobile phone data captures a better picture of human mobility patterns. This work contributes to the ongoing discussion on the value of aggregated mobility estimates from CDRs data that, with appropriate data protection and privacy safeguards, can be used for social impact applications and humanitarian action.
Assuntos
Epidemias , Infecção por Zika virus , Zika virus , Animais , Colômbia/epidemiologia , Humanos , Mosquitos Vetores , Infecção por Zika virus/epidemiologiaRESUMO
We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95-112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals' mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic.
Assuntos
COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , SARS-CoV-2/isolamento & purificação , Fatores Socioeconômicos , Algoritmos , COVID-19/epidemiologia , COVID-19/virologia , Chile/epidemiologia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Transmissão de Doença Infecciosa/prevenção & controle , Transmissão de Doença Infecciosa/estatística & dados numéricos , Humanos , Incidência , Modelos Teóricos , Pandemias , SARS-CoV-2/fisiologia , Fatores de TempoRESUMO
Determining the number of cases in an epidemic is fundamental to properly evaluate several disease features of high relevance for public health policies such as mortality, morbidity or hospitalization rates. Surveillance efforts are however incomplete especially at the early stage of an outbreak due to the ongoing learning process about the disease characteristics. An example of this is represented by the number of H1N1 influenza cases in Mexico during the first months of the current pandemic. Several estimates using backtrack calculation based on imported cases from Mexico in other countries point out that the actual number of cases was likely orders of magnitude larger than the number of confirmed cases. Realistic computational models fed with the best available estimates of the basic disease parameters can provide an ab-initio calculation of the number of cases in Mexico as other countries. Here we use the Global Epidemic and Mobility (GLEaM) model to obtain estimates of the size of the epidemic in Mexico as well as of imported cases at the end of April and beginning of May. We find that the reference range for the number of cases in Mexico on April 30th is 121,000 to 1,394,000 in good agreement with the recent estimates by Lipsitch et al. [M. Lipsitch, PloS One 4:e6895 (2009)]. The number of imported cases from Mexico in several countries is found to be in good agreement with the surveillance data.