Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
Chemistry ; : e202400468, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683640

RESUMO

Two series of metallo-(Zn(II), Mg(II), and Ru(II)) and free-base phthalocyanines (Pcs) with a carboxyl anchoring group and well-established bulky peripheral substituents (either tert-butyl or bulky 2,6-diisopropylphenoxy) were synthesized and tested as sensitizers in dye-sensitized solar cells (DSSCs). The trend of photovoltaic efficiencies (PCEs) for free-base and metallo Pcs followed the order Zn(II)Pc > Mg(II)Pc >> H2Pc ≈ Ru(II)Pc regardless of the peripheral substitution. Higher efficiencies (4.95 versus. 3.63 for the Zn(II) derivatives) were achieved with Pcs bearing the bulkier 2,6-diisopropylphenoxy group, indicating a lower aggregation and more suitable HOMO-LUMO levels. Furthermore, these derivatives showed a more relevant influence of the metal on the PCE (from the highest value of 4.95 for the Zn(II)Pc to the lowest value of 0.23 for the Ru(II)Pc. In both series, the best PCEs observed with the Zn(II) derivatives were mainly due to their highest Jsc values. The lowest efficiencies found for the free-bases and Ru(II) derivatives were attributed to a mismatch between their LUMO levels and the conduction band of the TiO2 and lower light-harvesting capabilities, respectively. In conclusion, Zn(II) derivatives are still the best Pc candidates to use as sensitizers in molecular photovoltaics.

2.
Chem Commun (Camb) ; 60(25): 3401-3404, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38440812

RESUMO

Three naphthorosarins, antiaromatic expanded porphyrins bearing different meso substituents (NRos 1-3), designed to self-assemble into columnar liquid crystalline (LC) structures, were synthesized and characterized using polarized optical microscopy (POM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), as well as supporting computational calculations. The substituents were found to play a crucial role in modulating the LC behaviour.

3.
Chempluschem ; 89(5): e202300779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38319826

RESUMO

The axial functionalization of Subporphyrazines (SubPzs) with unreported alkoxy groups, carboxy and carboperoxy rests, as well as sulfanyl, aryl and amino groups, forming B-O, B-S, B-C, and B-N bonds, respectively, has been investigated. The studied oxygen nucleophiles include aromatic and sterically demanding aliphatic alcohols, along with carboxylic acids and peracids. In general, direct substitution of the chloro-SubPz by oxygen nucleophiles of diverse nature proceeds smoothly, with yields of the isolated alkoxy and carboxy-substituted SubPzs ranging from 49 to 100 %. Conversely, direct substitution with sulphur, carbon and nitrogen nucleophiles do not afford the corresponding substituted SubPzs. In these cases, a stepwise procedure involving an axial triflate-SubPz intermediate was employed, affording only the phenyl-SubPz in 8 % yield. The major compound under these conditions was the unreported SubPz µ-oxo dimer, presumably arising from substitution of the triflate-SubPz by the in situ generated hydroxy-SubPz. This result indicates a quite low reactivity of the TfO-SubPz intermediate with carbon, sulphur and nitrogen nucleophiles. All SubPzs prepared in this work exhibited fluorescence at 510-515 nm with quantum yields ranging from 0.1 to 0.24. Additionally, all SubPzs generated singlet oxygen, with ΦΔ values ranging from 0.15 to 0.57, which show no apparent correlation with the axial substituents.

4.
Org Lett ; 26(4): 955-959, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236757

RESUMO

A subporphyrazine (SubPz)-dithienylethene (DTE) photochromic device with 1o and 1c states, was developed and characterized. In this device, the DTE unit can reversibly switch the SubPz absorbance from green to near-infrared [λmax (o/c) = 527 nm/740 nm], as well as the SubPz fluorescence and singlet oxygen quantum yields. The core of this design involves using a highly tunable SubPz chromophore that shares its quasi-isolated ethene moiety with a DTE photoswitch.

5.
Phys Chem Chem Phys ; 26(5): 4759-4765, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252531

RESUMO

The design, synthesis and evaluation of a subphthalocyanine-flipper (SubPc-Flipper) amphiphilic dyad is reported. This dyad combines two fluorophores that function in the visible region (420-800 nm) for the simultaneous sensing of both ordered and disordered lipidic membranes. The flipper probes part of the dyad possesses mechanosensitivity, long fluorescence lifetimes (τ = 3.5-5 ns) and selective staining of ordered membranes. On the other hand, subphthalocyanines (SubPc) are short-lifetime (τ = 1-2.5 ns) fluorophores that are insensitive to membrane tension. As a result of a Förster Resonance Energy Transfer (FRET) process, the dyad not only retains the mechanosensitivity of flippers but also demonstrates high selectivity and emission in different kinds of lipidic membranes. The dyad exhibits high emission and sensitivity to membrane tension (Δτ = 3.5 ns) when tested in giant unilamellar vesicles (GUVs) with different membrane orders. Overall, the results of this study represent a significant advancement in the applications of flippers and dyads in mechanobiology.

6.
Angew Chem Int Ed Engl ; 63(8): e202315064, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38092707

RESUMO

Triplet dynamics in singlet fission depend strongly on the strength of the electronic coupling. Covalent systems in solution offer precise control over such couplings. Nonetheless, efficient free triplet generation remains elusive in most systems, as the intermediate triplet pair 1 (T1 T1 ) is prone to triplet-triplet annihilation due to its spatial confinement. In the solid state, entropically driven triplet diffusion assists in the spatial separation of triplets, resulting in higher yields of free triplets. Control over electronic coupling in the solid state is, however, challenging given its sensitivity to molecular packing. We have thus developed a hexameric system (HexPnc) to enable solid-state-like triplet diffusion at the molecular scale. This system is realized by covalently tethering three pentacene dimers to a central subphthalocyanine scaffold. Transient absorption spectroscopy, complemented by theoretical structural optimizations and steady-state spectroscopy, reveals that triplet diffusion is indeed facilitated due to intramolecular cluster formation. The yield of free triplets in HexPnc is increased by a factor of up to 14 compared to the corresponding dimeric reference (DiPnc). Thus, HexPnc establishes crucial design aspects for achieving efficient triplet dissociation in strongly coupled systems by providing avenues for diffusive separation of 1 (T1 T1 ), while, concomitantly, retaining strong interchromophore coupling which preserves rapid formation of 1 (T1 T1 ).

7.
Angew Chem Int Ed Engl ; 62(44): e202311255, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695637

RESUMO

Herein we report the first example of a supramolecular cage that works as a catalytic molecular reactor to perform transformations over fullerenes in aqueous medium. Taking advantage of the ability of metallo-organic Pd(II)-subphthalocyanine (SubPc) capsules to form stable host:guest complexes with C60 , we have prepared a water-soluble cage that provides a hydrophobic environment for conducting cycloadditions over encapsulated C60 , namely, Diels-Alder reactions with anthracene. Indeed, the presence of catalytic amounts of SubPc cage dissolved in water promotes co-encapsulation of insoluble C60 and anthracene substrates, allowing the reaction to occur inside the cavity under mild conditions. The lower stability of the host:guest complex with the resulting C60 cycloadduct facilitates its displacement by pristine C60 , which grants catalytic turnover. Moreover, bis-addition compounds are regioselectively formed inside the cage when using excess anthracene.

8.
Molecules ; 28(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570710

RESUMO

New substituted [30]trithiadodecaazahexaphyrines (hemihexaphyrazines) were synthesized by a crossover condensation of 2,5-diamino-1,3,4-thiadiazole with 4-chloro-5-(2,6-diisopropylphenoxy)- or 4,5-bis-(2,6-diisopropylphenoxy)phthalonitriles. The compounds were characterized by 1H-, 13C-NMR, including COSY, HMBC, and HSQC spectroscopy, MALDI TOF spectrometry, elemental analysis, IR and UV-Vis absorbance and fluorescence techniques.

9.
J Clin Exp Dent ; 15(7): e578-e583, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519319

RESUMO

Background: To combat the coronavirus pandemic different vaccines have been developed. However, diverse adverse effects have been reported due to their use, including oral manifestations. Our objective is to review the existing bibliography to analyze what complications these vaccines have caused in the oral cavity. Material and Methods: A bibliographic search was conducted by two independent reviewers (TS and CL), in parallel in 6 electronic databases (PubMed, Scopus, Cochrane, Google Scholar, LILACS, BioMed Central). A total of 22 articles were analyzed. Results: The most frequent adverse effect was oral lichen planus, with a higher prevalence in women and after the Pfizer mRNA BNT162b2 vaccine. Conclusions: These complications are minor and resolve with treatment, so the benefit of the use of vaccines outweigh the potential risks associated with these. Key words:Covid-19 vaccine, oral lesions, oral manifestations, SARS-CoV-2 vaccine, oral symptoms.

10.
Chemistry ; 29(51): e202301782, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350310

RESUMO

The peripheral borylation of porphyrinoids has become a key step to prepare advanced functional materials. This study reports the synthesis, electronic properties, and reactivity of borylated subphthalocyanines. These compounds, which are prepared by Suzuki-Miyaura borylation in excellent yields, are easily purified, display a great stability, and serve as powerful starting materials for the post-functionalization of SubPcs via cross-coupling reactions. Remarkably, this novel approach is more efficient than the methodologies already described and enables the preparation of exotic systems, such as SubPc dimeric species linked by C-C bonds, which are not accessible so far and present promising properties for optoelectronic devices.

11.
Adv Mater ; 35(40): e2302207, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37151102

RESUMO

A constant increase in global emission standard is causing fuel cell (FC) technology to gain importance. Over the last two decades, a great deal of research has been focused on developing more active catalysts to boost the performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC), as well as their durability. Due to material degradation at high-temperature conditions, catalyst design becomes challenging. Two main approaches are suggested: (i) alloying platinum (Pt) with low-cost transition metals to reduce Pt usage, and (ii) developing novel catalyst support that anchor metal particles more efficiently while inhibiting corrosion phenomena. In this comprehensive review, the most recent platinum group metal (PGM) and platinum group metal free (PGM-free) catalyst development is detailed, as well as the development of alternative carbon (C) supports for HT-PEMFCs.

12.
Chem Sci ; 14(16): 4273-4277, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37123186

RESUMO

High spin polarization (SP) in studies of chiral induced spin selectivity (CISS) is only observed when chiral molecules are properly organized. This is generally achieved by using anchoring groups or complex supramolecular polymers. A new class of spin filters based on bowl-shaped aromatics is reported, which form high-quality thin-films by simply spin-coating and displaying high spin filtering properties. In particular, we fabricate devices containing enantiopure tribromo-subphthalocyanines (SubPcs), and measure the CISS effect by means of magnetic conductive probe atomic force microscopy (mc-AFM). Circular dichroism and AFM experiments reveal that the resulting thin-film presents a well-ordered chiral structure. Remarkably, the resulting devices show SPs as high as ca. 50%, which are comparable to those obtained by using the current complex methodologies. These results boost the potential of bowl-shaped aromatics as easily processable spin filters, opening new frontiers toward realistic and efficient spintronic devices based on the CISS effect.

13.
Angew Chem Int Ed Engl ; 62(24): e202300511, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37083071

RESUMO

We describe here a near infrared light-responsive elastin-like peptide (ELP)-based targeted nanoparticle (NP) that can rapidly switch its size from 120 to 25 nm upon photo-irradiation. Interestingly, the targeting function, which is crucial for effective cargo delivery, is preserved after transformation. The NPs are assembled from (targeted) diblock ELP micelles encapsulating photosensitizer TT1-monoblock ELP conjugates. Methionine residues in this monoblock are photo-oxidized by singlet oxygen generated from TT1, turning the ELPs hydrophilic and thus trigger NP dissociation. Phenylalanine residues from the diblocks then interact with TT1 via π-π stacking, inducing the re-formation of smaller NPs. Due to their small size and targeting function, the NPs penetrate deeper in spheroids and kill cancer cells more efficiently compared to the larger ones. This work could contribute to the design of "smart" nanomedicines with deeper penetration capacity for effective anticancer therapies.


Assuntos
Elastina , Nanopartículas , Elastina/química , Peptídeos/química , Nanopartículas/química , Micelas
14.
J Am Chem Soc ; 145(17): 9548-9563, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083447

RESUMO

The goal of harnessing the theoretical potential of singlet fission (SF), a process in which one singlet excited state is split into two triplet excited states, has become a central challenge in solar energy research. Covalently linked dimers provide crucial models for understanding the role of chromophore arrangement and coupling in SF. Sensitizers can be integrated into these systems to expand the absorption bandwidth through which SF can be accessed. Here, we define the role of the sensitizer-chromophore geometry in a sensitized SF model system. To this end, two conjugates have been synthesized consisting of a pentacene dimer (SF motif) connected via a rigid alkynyl bridge to a subphthalocyanine (the sensitizer motif) in either an axial or a peripheral arrangement. Steady-state and time-resolved photophysical measurements are used to confirm that both conjugates operate as per design, displaying near unity energy transfer efficiencies and high triplet quantum yields from SF. Decisively, energy transfer between the subphthalocyanine and pentacene dimer occurs ca. 26 times faster in the peripheral conjugate, even though the two chromophores are ca. 3 Å farther apart than in the axial conjugate. Following a theoretical evaluation of the dipolar coupling, Vdip2, and the orientation factor, κ2, of both the axial (Vdip2 = 140 cm-2; κ2 = 0.08) and the peripheral (Vdip2 = 724 cm-2; κ2 = 1.46) arrangements, we establish that this rate acceleration is due to a more favorable (nearly co-planar) relative orientation of the transition dipole moments of the subphthalocyanine and pentacenes in the peripheral constellation.

15.
J Med Chem ; 66(5): 3448-3459, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36802644

RESUMO

Pt(II)-BODIPY complexes combine the chemotherapeutic activity of Pt(II) with the photocytotoxicity of BODIPYs. Additional conjugation with targeting ligands can boost the uptake by cancer cells that overexpress the corresponding receptors. We describe two Pt(II) triangles, 1 and 2, built with pyridyl BODIPYs functionalized with glucose (3) or triethylene glycol methyl ether (4), respectively. Both 1 and 2 showed higher singlet oxygen quantum yields than 3 and 4, due to the enhanced singlet-to-triplet intersystem crossing. To evaluate the targeting effect of the glycosylated derivative, in vitro experiments were performed using glucose transporter 1 (GLUT1)-positive HT29 and A549 cancer cells, and noncancerous HEK293 cells as control. Both 1 and 2 showed higher cellular uptake than 3 and 4. Specifically, 1 was selective and highly cytotoxic toward HT29 and A549 cells. The synergistic chemo- and photodynamic behavior of the metallacycles was also confirmed. Notably, 1 exhibited superior efficacy toward the cisplatin-resistant R-HepG2 cells.


Assuntos
Antineoplásicos , Fotoquimioterapia , Humanos , Antineoplásicos/farmacologia , Células HEK293 , Fármacos Fotossensibilizantes/farmacologia
16.
Angew Chem Int Ed Engl ; 62(5): e202214543, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36350769

RESUMO

Large π-conjugated systems are key in the area of molecular materials. Herein, we prepare via AuI -catalyzed cyclization a series of fully π-conjugated anthracene-fused oligo-BODIPYs. Their structural and optoelectronic properties were studied by several techniques, ranging from X-ray, UV/Vis, and cyclic voltammetry to transient absorption spectroscopy. As a complement, their electronic structures were explored by means of Density Functional Theory (DFT) calculations. Depending on the size and shape of the π-conjugated skeleton, unique features-such as face-to-face supramolecular organization, NIR absorption and fluorescence as well as strong electron accepting character-were noted. All in all, the aforementioned features render them valuable for technological applications.

17.
Chem Soc Rev ; 51(23): 9482-9619, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36354343

RESUMO

Half a century after the synthesis of the first subporphyrinoid, the study of tripyrrole and trisoindole porphyrin analogues constitutes a fervent and rapidly expanding research area. The outstanding structural, electronic and optical features of these cone-shaped aromatic macrocycles render them attractive candidates for a wide variety of applications, ranging from optoelectronics to biomedicine. To tune their properties and exploit their functionalities, the development of novel methodologies for the synthesis and post-functionalization of these contracted porphyrinoids, as well as a deep understanding of their supramolecular organization and their implementation into multicomponent systems of increasing complexity are of paramount importance. Herein, a review of the most recent advances in the fundamentals and applications of subporphyrinoids is presented, which comprehensively cover the last decade of discoveries. The final aim is to highlight the chemical versatility and intriguing physicochemical features of subporphyrinoids, while providing an updated overview of their most promising applications.


Assuntos
Porfirinas , Porfirinas/química
18.
Nanoscale ; 14(36): 13155-13165, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36048027

RESUMO

Controlling the molecular architecture of well-organized organic building blocks and linking their functionalities with the impact of solar-light converting systems constitutes a grand challenge in materials science. Strong absorption cross-sections across the visible range of the solar spectrum as well as a finely balanced energy- and redox-gradient are all important features that pave the way for either funneling excited state energy or transducing charges. In light of this, we used thiopyridyl-phthalocyanines (PcSPy) and ruthenium (tert-butyl)-phthalocyanines (RuPc) as versatile building blocks and demonstrated the realization of a family of multi-functional PcSPy-RuPc 1-4 by means of axial coordination. Sizeable electronic couplings between the electron donors and acceptors in PcSPy-RuPc 1-4 govern ground-state as well as excited-state reactivity. Time-resolved techniques, in general, and fluorescence and transient absorption spectroscopy, in particular, helped to corroborate a rapid charge separation next to a slow charge recombination. Key to these charge transfer characteristics are higher lying, vibrationally hot states of the singlet excited states in parallel with a charge transfer state and the presence of several heavy atom effects that are provided by ruthenium and sulfur. As such, our advanced investigations confirm that rapid charge separation evolves from both higher lying, vibrationally hot states as well as from a charge transfer state, populating charge separated states, whose energies exceed those of the singlet excited states. Charge recombination involves triplet rather than singlet charge separated states, which delays the charge recombination by one order of magnitude.

19.
J Am Chem Soc ; 144(36): 16579-16587, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36052724

RESUMO

The development of chiral materials is severely limited by the challenge to achieve enantiopure derivatives with both configurational stability and good optoelectronic properties. Herein we demonstrate that enantiopure subphthalocyanines (SubPcs) fulfill such demanding requirements and bear the prospect of becoming components of chiral technologies. Particularly, we describe the synthesis of enantiopure SubPcs and assess the impact of chirality on aspects as fundamental as the supramolecular organization, the behavior in contact with metallic surfaces, and the on-surface reactivity and polymerization. We find that enantiopure SubPcs remarkably tend to organize in columnar polar assemblies at the solid state and highly ordered chiral superstructures on Au(111) surfaces. At the metal interface, such SubPcs are singled out by scanning tunneling microscopy. DFT calculations suggest that SubPcs undergo a bowl-to-bowl inversion that was shown to be dependent on the axial substituent. Finally, we polymerize by means of on-surface synthesis a highly regular 2D, porous and chiral, π-extended polymer that paves the way to future nanodevice fabrication.

20.
Chem Sci ; 13(32): 9249-9255, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36092995

RESUMO

The internal cavity formed by a dimeric subphthalocyanine (SubPc) capsule (SubPc2Pd3, 2), ensembled by coordination of pyridyl substituents in the monomeric SubPc 1 to Pd centers, has proved an optimal space for the complexation of C60 fullerene. Taking advantage of the intense absorption of green light of the SubPc component at around 550 nm, we have tested different green-light induced photoredox addition reactions over the double bonds of guest C60. Both addition of amine radicals, generated by reductive quenching of the excited state of 2 by aromatic trimethylsilylamines, and addition of trifluoroethyl radicals, obtained from oxidative quenching of the photosensitizer, have successfully taken place with good yields in the 2:C60 host:guest complex. On the other hand, both the photoredox reactions result in much lower yields when the monomeric pyridyl-SubPc is used as a photocatalyst, demonstrating that encapsulation results in a strong acceleration of the reaction. Importantly, this is the first example of the use of a confined microenvironment to trigger photoredox chemical transformations of fullerenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...