Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752204

RESUMO

The widespread presence of autoantibodies in acute infection with SARS-CoV-2 is increasingly recognized, but the prevalence of autoantibodies in non-SARS-CoV-2 infections and critical illness has not yet been reported. We profiled IgG autoantibodies in 267 patients from 5 independent cohorts with non-SARS-CoV-2 viral, bacterial, and noninfectious critical illness. Serum samples were screened using Luminex arrays that included 58 cytokines and 55 autoantigens, many of which are associated with connective tissue diseases (CTDs). Samples positive for anti-cytokine antibodies were tested for receptor blocking activity using cell-based functional assays. Anti-cytokine antibodies were identified in > 50% of patients across all 5 acutely ill cohorts. In critically ill patients, anti-cytokine antibodies were far more common in infected versus uninfected patients. In cell-based functional assays, 11 of 39 samples positive for select anti-cytokine antibodies displayed receptor blocking activity against surface receptors for Type I IFN, GM-CSF, and IL-6. Autoantibodies against CTD-associated autoantigens were also commonly observed, including newly detected antibodies that emerged in longitudinal samples. These findings demonstrate that anti-cytokine and autoantibodies are common across different viral and nonviral infections and range in severity of illness.


Assuntos
Autoanticorpos , COVID-19 , Humanos , Autoantígenos , Estado Terminal , Citocinas , SARS-CoV-2
2.
Mucosal Immunol ; 15(6): 1309-1320, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36352099

RESUMO

Neonates exhibit increased susceptibility to respiratory viral infections, attributed to inflammation at the developing pulmonary air-blood interface. IFN I are antiviral cytokines critical to control viral replication, but also promote inflammation. Previously, we established a neonatal murine influenza virus (IV) model, which demonstrates increased mortality. Here, we sought to determine the role of IFN I in this increased mortality. We found that three-day-old IFNAR-deficient mice are highly protected from IV-induced mortality. In addition, exposure to IFNß 24 h post IV infection accelerated death in WT neonatal animals but did not impact adult mortality. In contrast, IFN IIIs are protective to neonatal mice. IFNß induced an oxidative stress imbalance specifically in primary neonatal IV-infected pulmonary type II epithelial cells (TIIEC), not in adult TIIECs. Moreover, neonates did not have an infection-induced increase in antioxidants, including a key antioxidant, superoxide dismutase 3, as compared to adults. Importantly, antioxidant treatment rescued IV-infected neonatal mice, but had no impact on adult morbidity. We propose that IFN I exacerbate an oxidative stress imbalance in the neonate because of IFN I-induced pulmonary TIIEC ROS production coupled with developmentally regulated, defective antioxidant production in response to IV infection. This age-specific imbalance contributes to mortality after respiratory infections in this vulnerable population.


Assuntos
Interferon Tipo I , Infecções por Orthomyxoviridae , Estresse Oxidativo , Animais , Camundongos , Antioxidantes/metabolismo , Inflamação , Interferon Tipo I/metabolismo , Interferon beta , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/fisiopatologia , Animais Recém-Nascidos
3.
J Exp Med ; 219(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36112363

RESUMO

Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.


Assuntos
Autoanticorpos , Influenza Humana , Interferon Tipo I , Pneumonia , COVID-19/complicações , COVID-19/imunologia , Humanos , Influenza Humana/complicações , Influenza Humana/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Pneumonia/complicações , Pneumonia/imunologia , Vacina contra Febre Amarela/efeitos adversos
4.
Proc Natl Acad Sci U S A ; 119(21): e2200413119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35576468

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ß are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.


Assuntos
Anticorpos Neutralizantes , Autoanticorpos , Autoimunidade , COVID-19 , Interferon Tipo I , SARS-CoV-2 , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Autoanticorpos/sangue , COVID-19/imunologia , COVID-19/mortalidade , Feminino , Humanos , Interferon Tipo I/imunologia , Masculino , Pessoa de Meia-Idade , Risco
5.
World J Biol Chem ; 13(2): 47-65, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35432769

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic, which was initiated in December 2019. COVID-19 is characterized by a low mortality rate (< 6%); however, this percentage is higher in elderly people and patients with underlying disorders. COVID-19 is characterized by mild to severe outcomes. Currently, several therapeutic strategies are evaluated, such as the use of anti-viral drugs, prophylactic treatment, monoclonal antibodies, and vaccination. Advanced cellular therapies are also investigated, thus representing an additional therapeutic tool for clinicians. Mesenchymal stromal cells (MSCs), which are known for their immunoregulatory properties, may halt the induced cytokine release syndrome mediated by SARS-CoV-2, and can be considered as a potential stem cell therapy. AIM: To evaluate the immunoregulatory properties of MSCs, upon stimulation with COVID-19 patient serum. METHODS: MSCs derived from the human Wharton's Jelly (WJ) tissue and bone marrow (BM) were isolated, cryopreserved, expanded, and defined according to the criteria outlined by the International Society for Cellular Therapies. Then, WJ and BM-MSCs were stimulated with a culture medium containing 15% COVID-19 patient serum, 1% penicillin-streptomycin, and 1% L-glutamine for 48 h. The quantification of interleukin (IL)-1 receptor a (Ra), IL-6, IL-10, IL-13, transforming growth factor (TGF)-ß1, vascular endothelial growth factor (VEGF)-a, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and indoleamine-2,3-dioxygenase (IDO) was performed using commercial ELISA kits. The expression of HLA-G1, G5, and G7 was evaluated in unstimulated and stimulated WJ and BM-MSCs. Finally, the interactions between MSCs and patients' macrophages were established using co-culture experiments. RESULTS: Thawed WJ and BM-MSCs exhibited a spindle-shaped morphology, successfully differentiated to "osteocytes", "adipocytes", and "chondrocytes", and in flow cytometric analysis were characterized by positivity for CD73, CD90, and CD105 (> 95%) and negativity for CD34, CD45, and HLA-DR (< 2%). Moreover, stimulated WJ and BM-MSCs were characterized by increased cytoplasmic granulation, in comparison to unstimulated cells. The HLA-G isoforms (G1, G5, and G7) were successfully expressed by the unstimulated and stimulated WJ-MSCs. On the other hand, only weak expression of HLA-G1 was identified in BM-MSCs. Stimulated MSCs secreted high levels of IL-1Ra, IL-6, IL-10, IL-13, TGF-ß1, FGF, VEGF, PDGF, and IDO in comparison to unstimulated cells (P < 0.05) after 12 and 24 h. Finally, macrophages derived from COVID-19 patients successfully adapted the M2 phenotype after co-culturing with stimulated WJ and BM-MSCs. CONCLUSION: WJ and BM-MSCs successfully produced high levels of immunoregulatory agents, which may efficiently modulate the over-activated immune responses of critically ill COVID-19 patients.

6.
STAR Protoc ; 3(1): 101151, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146450

RESUMO

Influenza A viruses (IAVs) are common respiratory viruses. Mouse models of IAV infection are valuable to study the mechanisms of IAV infection and pathology. Here, we present a detailed protocol for IAV infection of mice via intranasal administration. We detail the processing of mouse lung tissue and then describe the determination of viral load by several approaches including RNA, protein, or plaque-forming unit assays. This protocol may be adapted to other influenza strains or respiratory viruses. For complete details on the use and execution of this protocol, please refer to Galani et al. (2017).


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Infecções por Orthomyxoviridae/patologia , Carga Viral
7.
Allergy ; 77(7): 2131-2146, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35038351

RESUMO

BACKGROUND: NLRP3-driven inflammatory responses by circulating and lung-resident monocytes are critical drivers of asthma pathogenesis. Autophagy restrains NLRP3-induced monocyte activation in asthma models. Yet, the effects of autophagy and its master regulator, transcription factor EB (TFEB), on monocyte responses in human asthma remain unexplored. Here, we investigated whether activation of autophagy and TFEB signaling suppress inflammatory monocyte responses in asthmatic individuals. METHODS: Peripheral blood CD14+ monocytes from asthmatic patients (n = 83) and healthy controls (n = 46) were stimulated with LPS/ATP to induce NLRP3 activation with or without the autophagy inducer, rapamycin. ASC specks, caspase-1 activation, IL-1ß and IL-18 levels, mitochondrial function, ROS release, and mTORC1 signaling were examined. Autophagy was evaluated by LC3 puncta formation, p62/SQSTM1 degradation and TFEB activation. In a severe asthma (SA) model, we investigated the role of NLRP3 signaling using Nlrp3-/- mice and/or MCC950 administration, and the effects of TFEB activation using myeloid-specific TFEB-overexpressing mice or administration of the TFEB activator, trehalose. RESULTS: We observed increased NLRP3 inflammasome activation, concomitant with impaired autophagy in circulating monocytes that correlated with asthma severity. SA patients also exhibited mitochondrial dysfunction and ROS accumulation. Autophagy failed to inhibit NLRP3-driven monocyte responses, due to defective TFEB activation and excessive mTORC1 signaling. NLRP3 blockade restrained inflammatory cytokine release and linked airway disease. TFEB activation restored impaired autophagy, attenuated NLRP3-driven pulmonary inflammation, and ameliorated SA phenotype. CONCLUSIONS: Our studies uncover a crucial role for TFEB-mediated reprogramming of monocyte inflammatory responses, raising the prospect that this pathway can be therapeutically harnessed for the management of SA.


Assuntos
Asma , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Asma/metabolismo , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Inflamassomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Res Sq ; 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35075455

RESUMO

The widespread presence of autoantibodies in acute infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is increasingly recognized, but the prevalence of autoantibodies in infections with organisms other than SARS-CoV-2 has not yet been reported. We used protein arrays to profile IgG autoantibodies from 317 samples from 268 patients across a spectrum of non-SARS-CoV-2 infections, many of whom were critically ill with pneumonia. Anti-cytokine antibodies (ACA) were identified in > 50% of patients infected with non-SARS-CoV-2 viruses and other pathogens, including patients with pneumonia attributed to bacterial causes. In cell-based functional assays, some ACA blocked binding to surface receptors for type I interferons (Type I IFN), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-6 (IL-6). Autoantibodies against traditional autoantigens associated with connective tissue diseases (CTDs) were also commonly observed in these cohorts, including newly-detected antibodies that emerged in longitudinal samples from patients infected with influenza. We conclude that autoantibodies, some of which are functionally active, may be much more prevalent than previously appreciated in patients who are symptomatically infected with diverse pathogens.

9.
Res Sq ; 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35043109

RESUMO

SARS-CoV-2 infection fatality rate (IFR) doubles with every five years of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ß are found in ~20% of deceased patients across age groups. In the general population, they are found in ~1% of individuals aged 20-70 years and in >4% of those >70 years old. With a sample of 1,261 deceased patients and 34,159 uninfected individuals, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to non-carriers. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRD was 17.0[95% CI:11.7-24.7] for individuals under 70 years old and 5.8[4.5-7.4] for individuals aged 70 and over, whereas, for autoantibodies neutralizing both molecules, the RRD was 188.3[44.8-774.4] and 7.2[5.0-10.3], respectively. IFRs increased with age, from 0.17%[0.12-0.31] for individuals <40 years old to 26.7%[20.3-35.2] for those ≥80 years old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84%[0.31-8.28] to 40.5%[27.82-61.20] for the same two age groups, for autoantibodies neutralizing both molecules. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, particularly those neutralizing both IFN-α2 and -ω. Remarkably, IFR increases with age, whereas RRD decreases with age. Autoimmunity to type I IFNs appears to be second only to age among common predictors of COVID-19 death.

10.
Sci Immunol ; 6(62)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413139

RESUMO

Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/mL, in plasma diluted 1 to 10) of IFN-α and/or -ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days-99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-ß. We also show, in a sample of 34,159 uninfected subjects from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or -ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals <70 years, 2.3% between 70 and 80 years, and 6.3% >80 years. By contrast, auto-Abs neutralizing IFN-ß do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases.


Assuntos
Autoanticorpos/imunologia , COVID-19/imunologia , Interferon Tipo I/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Autoanticorpos/sangue , COVID-19/mortalidade , Estudos de Casos e Controles , Criança , Pré-Escolar , Estado Terminal , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lactente , Recém-Nascido , Interferon-alfa/imunologia , Pessoa de Meia-Idade , Adulto Jovem
11.
medRxiv ; 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34282422

RESUMO

Genomic regions have been associated with COVID-19 susceptibility and outcomes, including the chr12q24.13 locus encoding antiviral proteins OAS1-3. Here, we report genetic, functional, and clinical insights into genetic associations within this locus. In Europeans, the risk of hospitalized vs. non-hospitalized COVID-19 was associated with a single 19Kb-haplotype comprised of 76 OAS1 variants included in a 95% credible set within a large genomic fragment introgressed from Neandertals. The risk haplotype was also associated with impaired spontaneous but not treatment-induced SARS-CoV-2 clearance in a clinical trial with pegIFN-λ1. We demonstrate that two exonic variants, rs10774671 and rs1131454, affect splicing and nonsense-mediated decay of OAS1 . We suggest that genetically-regulated loss of OAS1 expression contributes to impaired spontaneous clearance of SARS-CoV-2 and elevated risk of hospitalization for COVID-19. Our results provide the rationale for further clinical studies using interferons to compensate for impaired spontaneous SARS-CoV-2 clearance, particularly in carriers of the OAS1 risk haplotypes.

12.
Nat Immunol ; 22(1): 32-40, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277638

RESUMO

A central paradigm of immunity is that interferon (IFN)-mediated antiviral responses precede pro-inflammatory ones, optimizing host protection and minimizing collateral damage1,2. Here, we report that for coronavirus disease 2019 (COVID-19) this paradigm does not apply. By investigating temporal IFN and inflammatory cytokine patterns in 32 moderate-to-severe patients with COVID-19 hospitalized for pneumonia and longitudinally followed for the development of respiratory failure and death, we reveal that IFN-λ and type I IFN production were both diminished and delayed, induced only in a fraction of patients as they became critically ill. On the contrary, pro-inflammatory cytokines such as tumor necrosis factor (TNF), interleukin (IL)-6 and IL-8 were produced before IFNs in all patients and persisted for a prolonged time. This condition was reflected in blood transcriptomes wherein prominent IFN signatures were only seen in critically ill patients who also exhibited augmented inflammation. By comparison, in 16 patients with influenza (flu) hospitalized for pneumonia with similar clinicopathological characteristics to those of COVID-19 and 24 nonhospitalized patients with flu with milder symptoms, IFN-λ and type I IFN were robustly induced earlier, at higher levels and independently of disease severity, whereas pro-inflammatory cytokines were only acutely produced. Notably, higher IFN-λ concentrations in patients with COVID-19 correlated with lower viral load in bronchial aspirates and faster viral clearance and a higher IFN-λ to type I IFN ratio correlated with improved outcome for critically ill patients. Moreover, altered cytokine patterns in patients with COVID-19 correlated with longer hospitalization and higher incidence of critical disease and mortality compared to flu. These data point to an untuned antiviral response in COVID-19, contributing to persistent viral presence, hyperinflammation and respiratory failure.


Assuntos
COVID-19/imunologia , Imunidade/imunologia , Influenza Humana/imunologia , Interferon Tipo I/imunologia , Interferons/imunologia , SARS-CoV-2/imunologia , Antivirais/imunologia , Antivirais/metabolismo , COVID-19/genética , COVID-19/virologia , Citocinas/genética , Citocinas/imunologia , Progressão da Doença , Expressão Gênica/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Imunidade/genética , Inflamação/genética , Inflamação/imunologia , Influenza Humana/genética , Interferon Tipo I/genética , Interferons/genética , Tempo de Internação , Prognóstico , SARS-CoV-2/fisiologia , Carga Viral/genética , Carga Viral/imunologia , Interferon lambda
13.
Immunity ; 46(5): 875-890.e6, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514692

RESUMO

Lambda interferons (IFNλs) or type III IFNs share homology, expression patterns, signaling cascades, and antiviral functions with type I IFNs. This has complicated the unwinding of their unique non-redundant roles. Through the systematic study of influenza virus infection in mice, we herein show that IFNλs are the first IFNs produced that act at the epithelial barrier to suppress initial viral spread without activating inflammation. If infection progresses, type I IFNs come into play to enhance viral resistance and induce pro-inflammatory responses essential for confronting infection but causing immunopathology. Central to this are neutrophils which respond to both cytokines to upregulate antimicrobial functions but exhibit pro-inflammatory activation only to type I IFNs. Accordingly, Ifnlr1-/- mice display enhanced type I IFN production, neutrophilia, lung injury, and lethality, while therapeutic administration of PEG-IFNλ potently suppresses these effects. IFNλs therefore constitute the front line of antiviral defense in the lung without compromising host fitness.


Assuntos
Aptidão Genética , Interações Hospedeiro-Patógeno , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Influenza Humana/metabolismo , Interferon gama/metabolismo , Animais , Análise por Conglomerados , Citocinas/biossíntese , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Interferon gama/genética , Interferon gama/farmacologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Carga Viral , Replicação Viral
14.
Cancer Biomark ; 10(5): 213-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22699782

RESUMO

The vascular endothelial growth factor (VEGF) has a pivotal role in angiogenesis. VEGF levels appear to be influenced by single nucleotide polymorphisms (SNPs) of the VEGF gene. The aim of this study was to assess the importance of four VEGF SNPs in modulating susceptibility to colorectal cancer. We have genotyped 223 patients with colorectal cancer and 264 healthy individuals for the -2578C>A, -1498C>T, -634G>C and +936C>T VEGF SNPs using Taqman probes in polymerase chain reactions. The -2578 A, -1498 C and -634 G alleles were more frequently detected in CRC patients compared to healthy controls. Moreover, the haplotype -2578C/-1498T was less frequent in CRC patients while the -2578A/-1498C haplotype was significantly more frequent in patients compared to healthy controls. VEGF -2578C>A and -1498C>T SNPs and -2578/-1498 haplotypes appear to be associated with susceptibility to CRC.


Assuntos
Neoplasias Colorretais/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fator A de Crescimento do Endotélio Vascular/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Feminino , Frequência do Gene , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...