Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Rev Sci Instrum ; 92(1): 013101, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514249

RESUMO

We introduce a setup to measure high-resolution inelastic x-ray scattering at the High Energy Density scientific instrument at the European X-Ray Free-Electron Laser (XFEL). The setup uses the Si (533) reflection in a channel-cut monochromator and three spherical diced analyzer crystals in near-backscattering geometry to reach a high spectral resolution. An energy resolution of 44 meV is demonstrated for the experimental setup, close to the theoretically achievable minimum resolution. The analyzer crystals and detector are mounted on a curved-rail system, allowing quick and reliable changes in scattering angle without breaking vacuum. The entire setup is designed for operation at 10 Hz, the same repetition rate as the high-power lasers available at the instrument and the fundamental repetition rate of the European XFEL. Among other measurements, it is envisioned that this setup will allow studies of the dynamics of highly transient laser generated states of matter.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25122398

RESUMO

We investigate subpicosecond dynamics of warm dense hydrogen at the XUV free-electron laser facility (FLASH) at DESY (Hamburg). Ultrafast impulsive electron heating is initiated by a ≤ 300-fs short x-ray burst of 92-eV photon energy. A second pulse probes the sample via x-ray scattering at jitter-free variable time delay. We show that the initial molecular structure dissociates within (0.9 ± 0.2) ps, allowing us to infer the energy transfer rate between electrons and ions. We evaluate Saha and Thomas-Fermi ionization models in radiation hydrodynamics simulations, predicting plasma parameters that are subsequently used to calculate the static structure factor. A conductivity model for partially ionized plasma is validated by two-temperature density-functional theory coupled to molecular dynamic simulations and agrees with the experimental data. Our results provide important insights and the needed experimental data on transport properties of dense plasmas.


Assuntos
Condutividade Elétrica , Elétrons , Hidrogênio/química , Temperatura , Hidrodinâmica , Lasers , Simulação de Dinâmica Molecular , Teoria Quântica , Difração de Raios X
4.
Sci Rep ; 4: 5214, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24909903

RESUMO

Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

5.
Phys Rev Lett ; 112(10): 105002, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679300

RESUMO

We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300 fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ∼0.9 ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.

6.
Phys Rev Lett ; 108(6): 063007, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401068

RESUMO

Two-color (x-ray+infrared) electron spectroscopy is used for investigating laser-assisted KLL Auger decay following 1s photoionization of atomic Ne with few-femtosecond x-ray pulses from the Linac Coherent Light Source. In an angle-resolved experiment, the overall width of the laser-modified Auger-electron spectrum and its structure change significantly as a function of the emission angle. The spectra are characterized by a strong intensity variation of the sidebands revealing a gross structure. This variation is caused, as predicted by theory, by the interference of electrons emitted at different times within the duration of one optical cycle of the infrared dressing laser, which almost coincides with the lifetime of the Ne 1s vacancy.

7.
Phys Rev Lett ; 106(16): 164801, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599370

RESUMO

We have studied a solid-to-plasma transition by irradiating Al foils with the FLASH free electron laser at intensities up to 10(16) W/cm(2). Intense XUV self-emission shows spectral features that are consistent with emission from regions of high density, which go beyond single inner-shell photoionization of solids. Characteristic features of intrashell transitions allowed us to identify Auger heating of the electrons in the conduction band occurring immediately after the absorption of the XUV laser energy as the dominant mechanism. A simple model of a multicharge state inverse Auger effect is proposed to explain the target emission when the conduction band at solid density becomes more atomiclike as energy is transferred from the electrons to the ions. This allows one to determine, independent of plasma simulations, the electron temperature and density just after the decay of crystalline order and to characterize the early time evolution.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(1 Pt 2): 016403, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21405780

RESUMO

Studies of materials under extreme conditions have relevance to a broad area of research, including planetary physics, fusion research, materials science, and structural biology with x-ray lasers. We study such extreme conditions and experimentally probe the interaction between ultrashort soft x-ray pulses and solid targets (metals and their deuterides) at the FLASH free-electron laser where power densities exceeding 10(17) W/cm(2) were reached. Time-of-flight ion spectrometry and crater analysis were used to characterize the interaction. The results show the onset of saturation in the ablation process at power densities above 10(16) W/cm(2). This effect can be linked to a transiently induced x-ray transparency in the solid by the femtosecond x-ray pulse at high power densities. The measured kinetic energies of protons and deuterons ejected from the surface reach several keV and concur with predictions from plasma-expansion models. Simulations of the interactions were performed with a nonlocal thermodynamic equilibrium code with radiation transfer. These calculations return critical depths similar to the observed crater depths and capture the transient surface transparency at higher power densities.

9.
Phys Rev Lett ; 104(22): 225001, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20867176

RESUMO

By use of high intensity XUV radiation from the FLASH free-electron laser at DESY, we have created highly excited exotic states of matter in solid-density aluminum samples. The XUV intensity is sufficiently high to excite an inner-shell electron from a large fraction of the atoms in the focal region. We show that soft-x-ray emission spectroscopy measurements reveal the electronic temperature and density of this highly excited system immediately after the excitation pulse, with detailed calculations of the electronic structure, based on finite-temperature density functional theory, in good agreement with the experimental results.


Assuntos
Alumínio/química , Elétrons , Processos Fotoquímicos , Gases em Plasma/química , Raios Ultravioleta
10.
Opt Express ; 18(5): 4689-94, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20389481

RESUMO

We report on the performance of a 60 kHz repetition rate sub-10 fs, optical parametric chirped pulse amplifier system with 2 W average power and 3 GW peak power. This is to our knowledge the highest average power sub-10 fs kHz-amplifier system reported to date. The amplifier is conceived for applications at free electron laser facilities and is designed such to be scalable in energy and repetition rate.

11.
Phys Rev Lett ; 104(12): 125503, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366545

RESUMO

In this Letter, we report the pioneering use of free electron laser radiation for the investigation of periodic crystalline structures. The diffraction properties of silver behenate single nanocrystals (5.8 nm periodicity) with the dimensions of 20 nm x 20 nm x 20 microm and as powder with grain sizes smaller than 200 nm were investigated with 8 nm free electron laser radiation in single-shot modus with 30 fs long free electron laser pulses. This work emphasizes the possibility of using soft x-ray free electron laser radiation for these crystallographic studies on a nanometer scale.


Assuntos
Cristalografia/métodos , Elétrons , Lasers , Ácidos Graxos/química , Compostos Organometálicos/química , Prata/química
12.
Opt Express ; 17(20): 18271-8, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19907618

RESUMO

We have focused a beam (BL3) of FLASH (Free-electron LASer in Hamburg: lambda = 13.5 nm, pulse length 15 fs, pulse energy 10-40 microJ, 5 Hz) using a fine polished off-axis parabola having a focal length of 270 mm and coated with a Mo/Si multilayer with an initial reflectivity of 67% at 13.5 nm. The OAP was mounted and aligned with a picomotor controlled six-axis gimbal. Beam imprints on poly(methyl methacrylate) - PMMA were used to measure focus and the focused beam was used to create isochoric heating of various slab targets. Results show the focal spot has a diameter of < or =1 microm. Observations were correlated with simulations of best focus to provide further relevant information.


Assuntos
Lasers , Lentes , Teste de Materiais/instrumentação , Teste de Materiais/métodos , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Desenho Assistido por Computador , Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Opt Express ; 17(1): 208-17, 2009 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19129890

RESUMO

We report the first observation of single-shot soft x-ray laser induced desorption occurring below the ablation threshold in a thin layer of poly (methyl methacrylate)--PMMA. Irradiated by the focused beam from the Free-electron LASer in Hamburg (FLASH) at 21.7 nm, the samples have been investigated by atomic-force microscope (AFM) enabling the visualization of mild surface modifications caused by the desorption. A model describing non-thermal desorption and ablation has been developed and used to analyze single-shot imprints in PMMA. An intermediate regime of materials removal has been found, confirming model predictions. We also report below-threshold multiple-shot desorption of PMMA induced by high-order harmonics (HOH) at 32 nm. Short-time exposure imprints provide sufficient information about transverse beam profile in HOH's tight focus whereas long-time exposed PMMA exhibits radiation-initiated surface ardening making the beam profile measurement infeasible.


Assuntos
Lasers , Raios X , Compostos de Boro/efeitos da radiação , Carbono/efeitos da radiação , Elétrons , Terapia a Laser/métodos , Microscopia de Força Atômica , Polimetil Metacrilato , Espectrofotometria , Propriedades de Superfície , Raios Ultravioleta
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(6 Pt 2): 066406, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19256961

RESUMO

We report the creation of solid-density aluminum plasma using free-electron laser (FEL) radiation at 13.5nm wavelength. Ultrashort pulses were focused on a bulk Al target, yielding an intensity of 2x10;{14}Wcm;{2} . The radiation emitted from the plasma was measured using an xuv spectrometer. Bremsstrahlung and line intensity ratios yield consistent electron temperatures of about 38eV , supported by radiation hydrodynamics simulations. This shows that xuv FELs heat up plasmas volumetrically and homogeneously at warm-dense-matter conditions, which are accurately characterized by xuv spectroscopy.

15.
Opt Express ; 15(10): 6036-43, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19546907

RESUMO

A linear accelerator based source of coherent radiation, FLASH (Free-electron LASer in Hamburg) provides ultra-intense femtosecond radiation pulses at wavelengths from the extreme ultraviolet (XUV; lambda<100nm) to the soft X-ray (SXR; lambda<30nm) spectral regions. 25-fs pulses of 32-nm FLASH radiation were used to determine the ablation parameters of PMMA - poly (methyl methacrylate). Under these irradiation conditions the attenuation length and ablation threshold were found to be (56.9+/-7.5) nm and approximately 2 mJ*cm(-2), respectively. For a second wavelength of 21.7 nm, the PMMA ablation was utilized to image the transverse intensity distribution within the focused beam at mum resolution by a method developed here.

16.
Faraday Discuss ; 122: 105-17; discussion 171-90, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12555852

RESUMO

Under UV irradiation p-formyl-trans-cinnamic acid (p-FCA) crystals in the beta-phase dimerise irreversibly to solid 4,4'-diformyl-beta-truxinic acid. The experimental conditions were chosen in such a way (non-aqueous environment and room temperature) that the product formed is amorphous. The kinetics of this bimolecular reaction, which has not yet been characterised, was investigated by picosecond time-resolved X-ray diffraction. From the experimental results a mechanism for this topochemical reaction is proposed including two observed time constants, one less than 100 ps and another of several seconds. The feasibility of investigating this class of substances by time-resolved X-ray diffraction from third generation synchrotron sources and future free-electron lasers is discussed.


Assuntos
Cinamatos/química , Difração de Raios X/métodos , Cinamatos/efeitos da radiação , Cinética , Estrutura Molecular , Fatores de Tempo , Raios Ultravioleta
17.
J Synchrotron Radiat ; 5(Pt 3): 226-31, 1998 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15263483

RESUMO

Novel focusing optical devices have been developed for synchrotron radiation in the energy range 40-100 keV. Firstly, a narrow-band-pass focusing energy-tuneable fixed-exit monochromator was constructed by combining meridionally bent Laue and Bragg crystals. Dispersion compensation was applied to retain the high momentum resolution despite the beam divergence caused by the focusing. Next, microfocusing was achieved by a bent multilayer arranged behind the crystal monochromator and alternatively by a bent Laue crystal. A 1.2 micro m-high line focus was obtained at 90 keV. The properties of the different set-ups are described and potential applications are discussed. First experiments were performed, investigating with high spatial resolution the residual strain gradients in layered polycrystalline materials. The results underline that focused high-energy synchrotron radiation can provide unique information on the mesoscopic scale to the materials scientist, complementary to existing techniques based on conventional X-ray sources, neutron scattering or electron microscopy.

18.
J Synchrotron Radiat ; 5(Pt 3): 286-92, 1998 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15263493

RESUMO

The use of synchrotron radiation with very high photon energies has become possible only with the latest generation of storage rings. All high-electron-energy synchrotron sources will have a dedicated program for the use of very high photon energies. The high-energy beamline ID15 at the ESRF was the first beamline built and dedicated to this purpose, and it has now been in user operation for more than three years. The useful energy range of this beamline is 30-1000 keV and the superconducting insertion device for producing the highest attainable photon energies is described in detail. The techniques most often used today are diffraction and Compton scattering; an overview of the most important experiments is given. Both techniques have been used in the investigation of magnetic systems, and, additionally, the high resolution in reciprocal space, which can be achieved in diffraction, has led to a series of applications. Other fields of research are addressed, and attempts to indicate possible future research areas of high-energy synchrotron radiation are made.

19.
J Synchrotron Radiat ; 5(Pt 3): 940-2, 1998 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15263704

RESUMO

Investigations of spin densities in ferromagnetic materials using magnetic Compton scattering are reported. At the high-energy beamline ID15 at the ESRF, experiments have been carried out utilizing the high flux at very high photon energies. Energies from 60 up to 1000 keV have been used for investigations of experimental resolution, cross section, spin moments and momentum distribution. Optimized conditions are found for photon energies from 200 to 250 keV with a momentum resolution < 0.4 a.u. and a doubled magnetic effect compared with earlier measurements. In the determination of absolute spin moments multiple scattering has to be taken into account.

20.
J Synchrotron Radiat ; 5(Pt 2): 82-9, 1998 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16687808

RESUMO

High-energy X-rav diffraction by means of triple-crystal techniques is a powerful tool for investigating dislocations and strain in bulk materials. Radiation with an energy typically higher than 80 keV combines the advantage of low attenuation with high resolution at large momentum transfers. The triple-crystal diffractometer at the High Energy Beamline of the European Synchrotron Radiation Facility is described. It is shown how the transverse and longitudinal resolution depend on the choice of the crystal reflection, and how the orientation of a reciprocal-lattice distortion in an investigated sample towards the resolution element of the instrument can play an important role. This effect is demonstrated on a single crystal of silicon where a layer of macro pores reveals satellites around the Bragg reflection. The resulting longitudinal distortion can be investigated using the high transverse resolution of the instrument when choosing an appropriate reflection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...