Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Genomics ; 24(1): 170, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016302

RESUMO

BACKGROUND: The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS: The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS: We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Reprodução , Polinização/genética , Transcriptoma , Flores
3.
J Appl Genet ; 64(3): 377-391, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37120451

RESUMO

Increased grain yield (GY) is the primary breeding target of wheat breeders. We performed the genome-wide association study (GWAS) on 168 elite winter wheat lines from an ongoing breeding program to identify the main determinants of grain yield. Sequencing of Diversity Array Technology fragments (DArTseq) resulted in 19,350 single-nucleotide polymorphism (SNP) and presence-absence variation (PAV) markers. We identified 15 main genomic regions located in ten wheat chromosomes (1B, 2B, 2D, 3A, 3D, 5A, 5B, 6A, 6B, and 7B) that explained from 7.9 to 20.3% of the variation in grain yield and 13.3% of the yield stability. Loci identified in the reduced genepool are important for wheat improvement using marker-assisted selection. We found marker-trait associations between three genes involved in starch biosynthesis and grain yield. Two starch synthase genes (TraesCS2B03G1238800 and TraesCS2D03G1048800) and a sucrose synthase gene (TraesCS3D03G0024300) were found in regions of QGy.rut-2B.2, QGy.rut-2D.1, and QGy.rut-3D, respectively. These loci and other significantly associated SNP markers found in this study can be used for pyramiding favorable alleles in high-yielding varieties or to improve the accuracy of prediction in genomic selection.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Fenótipo , Grão Comestível/genética , Polimorfismo de Nucleotídeo Único/genética
4.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499647

RESUMO

Disclosure of markers that are significantly associated with plant traits can help develop new varieties with desirable properties. This study determined the genome-wide associations based on DArTseq markers for six agronomic traits assessed in eight environments for wheat. Moreover, the association study for heterosis and analysis of the effects of markers grouped by linkage disequilibrium were performed based on mean values over all experiments. All results were validated using data from post-registration trials. GWAS revealed 1273 single nucleotide polymorphisms with biologically significant effects. Most polymorphisms were predicted to be modifiers of protein translation, with only two having a more pronounced effect. Markers significantly associated with the considered set of features were clustered within chromosomes based on linkage disequilibrium in 327 LD blocks. A GWAS for heterosis revealed 1261 markers with significant effects.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Melhoramento Vegetal , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Genótipo , Genoma de Planta
5.
J Appl Genet ; 63(1): 73-86, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34561842

RESUMO

Triticale is a cereal of high economic importance; however, along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper, we present a new, high-density genetic map of triticale doubled haploids (DH) population "Grenado" × "Zorro" composed of DArT, silicoDArT, and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein, and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.


Assuntos
Triticale , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas , Melhoramento Vegetal , Doenças das Plantas/genética
6.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502055

RESUMO

Among the natural mechanisms used for wheat hybrid breeding, the most desirable is the system combining the cytoplasmic male sterility (cms) of the female parent with the fertility-restoring genes (Rf) of the male parent. The objective of this study was to identify Rf candidate genes in the wheat genome on the basis of transcriptome sequencing (RNA-seq) and paralog analysis data. Total RNA was isolated from the anthers of two fertility-restorer (Primépi and Patras) and two non-restorer (Astoria and Grana) varieties at the tetrad and late uninucleate microspore stages. Of 36,912 differentially expressed genes (DEGs), 21 encoding domains in known fertility-restoring proteins were selected. To enrich the pool of Rf candidates, 52 paralogs (PAGs) of the 21 selected DEGs were included in the analyses. The expression profiles of most of the DEGs and PAGs determined bioinformatically were as expected (i.e., they were overexpressed in at least one fertility-restorer variety). However, these results were only partially consistent with the quantitative real-time PCR data. The DEG and PAG promoters included cis-regulatory elements common among PPR-encoding genes. On the basis of the obtained results, we designated seven genes as Rf candidate genes, six of which were identified for the first time in this study.


Assuntos
Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Poliploidia , Transcriptoma , Triticum/fisiologia
7.
BMC Genomics ; 22(1): 81, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509072

RESUMO

BACKGROUND: The genetic diversity and gene pool characteristics must be clarified for efficient genome-wide association studies, genomic selection, and hybrid breeding. The aim of this study was to evaluate the genetic structure of 509 wheat accessions representing registered varieties and advanced breeding lines via the high-density genotyping-by-sequencing approach. RESULTS: More than 30% of 13,499 SNP markers representing 2162 clusters were mapped to genes, whereas 22.50% of 26,369 silicoDArT markers overlapped with coding sequences and were linked in 3527 blocks. Regarding hexaploidy, perfect sequence matches following BLAST searches were not sufficient for the unequivocal mapping to unique loci. Moreover, allelic variations in homeologous loci interfered with heterozygosity calculations for some markers. Analyses of the major genetic changes over the last 27 years revealed the selection pressure on orthologs of the gibberellin biosynthesis-related GA2 gene and the senescence-associated SAG12 gene. A core collection representing the wheat population was generated for preserving germplasm and optimizing breeding programs. CONCLUSIONS: Our results confirmed considerable differences among wheat subgenomes A, B and D, with D characterized by the lowest diversity but the highest LD. They revealed genomic regions that have been targeted by breeding.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Mapeamento Cromossômico , Variação Genética , Genoma de Planta , Genótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Triticum/genética
8.
Int J Mol Sci ; 21(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784653

RESUMO

Dysregulation of miRNAs has a fundamental role in the initiation, development and progression of prostate cancer (PCa). The potential of miRNA in gene therapy and diagnostic applications is well documented. To further improve miRNAs' ability to distinguish between PCa and benign prostatic hyperplasia (BPH) patients, nine miRNA (-21, -27b, -93, -141, -205, -221, -182, -375 and let-7a) with the highest reported differentiation power were chosen and for the first time used in comparative studies of serum and prostate tissue samples. Spearman correlations and response operating characteristic (ROC) analyses were applied to assess the capability of the miRNAs present in serum to discriminate between PCa and BPH patients. The present study clearly demonstrates that miR-93 and miR-375 could be taken into consideration as single blood-based non-invasive molecules to distinguish PCa from BPH patients. We indicate that these two miRNAs have six common, PCa-related, target genes (CCND2, MAP3K2, MXI1, PAFAH1B1, YOD1, ZFYVE26) that share the molecular function of protein binding (GO:0005515 term). A high diagnostic value of the new serum derived miR-182 (AUC = 0.881, 95% confidence interval, CI = 0.816-0.946, p < 0.0001, sensitivity and specificity were 85% and 79%, respectively) is also described.


Assuntos
Genes Neoplásicos , MicroRNAs/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Regiões 3' não Traduzidas/genética , Idoso , Idoso de 80 Anos ou mais , Sítios de Ligação/genética , Ciclina D2/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Análise de Componente Principal , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Curva ROC
9.
Life (Basel) ; 10(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575579

RESUMO

Veratrum-type steroidal alkaloids (VSA) are the major bioactive ingredients that strongly determine the pharmacological activities of Veratrum nigrum. Biosynthesis of VSA at the molecular and genetic levels is not well understood. Next-generation sequencing of representational difference analysis (RDA) products after elicitation and precursor feeding was applied to identify candidate genes involved in VSA biosynthesis. A total of 12,048 contigs with a median length of 280 bases were received in three RDA libraries obtained after application of methyl jasmonate, squalene and cholesterol. The comparative analysis of annotated sequences was effective in identifying candidate genes. GABAT2 transaminase and hydroxylases active at C-22, C-26, C-11, and C-16 positions in late stages of jervine biosynthesis were selected. Moreover, genes coding pyrroline-5-carboxylate reductase and enzymes from the short-chain dehydrogenases/reductases family (SDR) associated with the reduction reactions of the VSA biosynthesis process were proposed. The data collected contribute to better understanding of jervine biosynthesis and may accelerate implementation of biotechnological methods of VSA biosynthesis.

10.
Gene ; 712: 143962, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31288057

RESUMO

Veratrum nigrum is protected plant of Melanthiaceae family, able to synthetize unique steroidal alkaloids important for pharmacy. Transcriptomes from leaves, stems and rhizomes of in vitro maintained V. nigrum plants were sequenced and annotated for genes and markers discovery. Sequencing of samples derived from the different organs resulted in a total of 108,511 contigs with a mean length of 596 bp. Transcripts derived from leaf and stalk were annotated at 28%, and 38% in Nr nucleotide database, respectively. The sequencing revealed 949 unigenes related with lipid metabolism, including 73 transcripts involved in steroids and genus-specific steroid alkaloids biosynthesis. Additionally, 3203 candidate SSRs markers we identified in unigenes with average density of one SSR locus every 6.2 kb sequence. Unraveling of biochemical machinery of the pathway responsible for steroidal alkaloids will open possibility to design and optimize biotechnological process. The transcriptomic data provide valuable resources for biochemical, molecular genetics, comparative transcriptomics, functional genomics, ecological and evolutionary studies of V. nigrum.


Assuntos
Alcaloides/biossíntese , Regulação da Expressão Gênica de Plantas , Esteroides/biossíntese , Transcriptoma , Veratrum/metabolismo , Mapeamento de Sequências Contíguas , DNA Complementar/metabolismo , Biblioteca Gênica , Ontologia Genética , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Análise de Sequência de RNA
11.
Physiol Plant ; 165(4): 711-727, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29774565

RESUMO

Microdochium nivale is a fungal pathogen that causes yield losses of cereals during winter. Cold hardening under light conditions induces genotype-dependent resistance of a plant to infection. We aim to show how photosystem II (PSII) regulation contributes to plant resistance. Using mapping population of triticale doubled haploid lines, three M. nivale strains and different infection assays, we demonstrate that plants that maintain a higher maximum quantum efficiency of PSII show less leaf damage upon infection. The fungus can establish necrotrophic or biotrophic interactions with susceptible or resistant genotypes, respectively. It is suggested that local inhibition of photosynthesis during the infection of sensitive genotypes is not balanced by a supply of energy from the tissue surrounding the infected cells as efficiently as in resistant genotypes. Thus, defence is limited, which in turn results in extensive necrotic damage. Quantitative trait loci regions, involved in the control of both PSII functioning and resistance, were located on chromosomes 4 and 6, similar to a wide range of PSII- and resistance-related genes. A meta-analysis of microarray experiments showed that the expression of genes involved in the repair and de novo assembly of PSII was maintained at a stable level. However, to establish a favourable energy balance for defence, genes encoding PSII proteins resistant to oxidative degradation were downregulated to compensate for the upregulation of defence-related pathways. Finally, we demonstrate that the structural and functional integrity of the plant is a factor required to meet the energy demand of infected cells, photosynthesis-dependent systemic signalling and defence responses.


Assuntos
Ascomicetos/patogenicidade , Complexo de Proteína do Fotossistema II/metabolismo , Triticale/metabolismo , Triticale/microbiologia , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Triticale/genética
12.
Int Urol Nephrol ; 50(9): 1619-1626, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30014459

RESUMO

PURPOSE: Prostate cancer (PCa) is a common tumor disease in western countries and a leading cause of cancer-driven mortality in men. Current methods for prostate cancer detection, like prostate-specific antigen screening, lead to significant overtreatment. The purpose of the study was to analyze circulating microRNAs in serum as non-invasive biomarkers in patients with diagnosis of prostate cancer and healthy individuals. METHODS: This preliminary study included a population of 20 patients with mean age of 68.6 years and mean PSA of 21.3 ng/ml. Eight healthy patients were used as control. MiRNAs were quantified in the total RNA fraction extracted from serum and levels of five microRNAs (miR-106b, miR-141, miR-21, mir-34a, and miR-375) were quantified by RT-qPCR. Statistical analyses evaluated correlation between clinicopathological data and miRNAs expression levels. RESULTS: Relative expression ratios of miR-106b, miR-141-3p, miR-21, and miR-375 were significantly increased (1.8-, 1.9-, 2.4-, and 2.6-fold, respectively) in the PCa group compared to healthy control. Using receiver operating characteristics, the highest area under the curve equal to 0.906 was obtained for miR-357 and indicates a very good diagnostic properties of this biomarker. We found expression level of mir-34a not related with PCa. CONCLUSIONS: Our results support previous findings on the possibility of discriminating prostate cancer patients from healthy controls by detecting miRNA (miR-141-3p, miR-21, and miR-375). Further insights into miRNA abundance and characteristics are necessary to validate the panel of miRNA as surrogate markers in diagnosis of prostate cancer.


Assuntos
MicroRNAs/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Idoso , Área Sob a Curva , Biomarcadores Tumorais/sangue , Estudos de Casos e Controles , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Neoplasias da Próstata/genética , Curva ROC , Transcriptoma
13.
Mol Cytogenet ; 11: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29416566

RESUMO

BACKGROUND: Telomeres are transcriptionally inactive genomic areas, which, if shortened, are associated with pathological processes, unsuccessful fertilization, aging, and death. Telomere dysfunction has also been linked to chromosomal rearrangements and genomic instability. The role of telomeres in postnatal life has been extensively studied and discussed both in physiological as well as in pathological processes. However, the role of telomere length in prenatal development is still poorly understood, and mainly concerns the preimplantation stage. The aim of this study was to estimate relative telomere length in spontaneously eliminated human embryos between 5th and 12th week of gestation. RESULTS: Relative telomere length was measured from total genomic DNA using a real-time polymerase chain reaction approach. In this study, we examined relative telomere length in 80 spontaneously eliminated embryos and in 25 embryos eliminated due to induced abortions. Relative telomere length in spontaneous abortions was significantly lower (P = 0.000001) compared to the induced abortions. Spontaneous abortions with aneuploid anomalies (monosomy X, trisomy 21, trisomy 16 and triploidy) were characterized by shorter telomeres, compared to spontaneous abortions, subgroup with euploid (46,XN) karyotype. CONCLUSION: Spontaneously lost pregnancies are characterized by shortened telomeres, especially in embryos with aneuploidies. We hypothesize that the shortening of telomeres is involved in the processes leading to spontaneous abortions.

14.
Genomics ; 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29107013

RESUMO

Changes in fenugreek transcriptome related to enhanced production of steroids were induced by methyl jasmonate, cholesterol and squalene, and recorded using RNA-seq. A total of 112,850 unigenes were obtained after de novo assembling of next generation sequencing data, and used for functional annotations. In steroidal saponins pathway, transcripts involved in mevalonate, terpenoid backbone and plant sterol synthesis were annotated. Overexpression of several transcripts from phytosterol biosynthesis pathway was confirmed by quantitative RT-PCR. In diosgenin biosynthesis pathway, fatty acid ω-hydroxylase (CYP86A2) and steroid 22-alpha-hydroxylase (CYP90B1) genes were annotated in all induced transcriptomes. Moreover, direct sequencing confirmed increased levels of CYP90B1, unspecific monooxygenase and 26-hydroxylase genes in plants with elevated level of diosgenin. New unigenes corresponding to enzymes involved in biosynthesis of diosgenin from cycloartenol via cholesterol were obtained and the role of CYP72A family in steroidal saponin biosynthesis was proposed. Additional support for biosynthetic pathway from cycloartenol to diosgenin was provided.

15.
Planta ; 245(5): 977-991, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161815

RESUMO

MAIN CONCLUSION: Representational difference analysis of cDNA was performed and differential products were sequenced and annotated. Candidate genes involved in biosynthesis of diosgenin in fenugreek were identified. Detailed mechanism of diosgenin synthesis was proposed. Fenugreek (Trigonella foenum-graecum L.) is a valuable medicinal and crop plant. It belongs to Fabaceae family and has a unique potential to synthesize valuable steroidal saponins, e.g., diosgenin. Elicitation (methyl jasmonate) and precursor feeding (cholesterol and squalene) were used to enhance the content of sterols and steroidal sapogenins in in vitro grown plants for representational difference analysis of cDNA (cDNA-RDA). To identify candidate genes involved in diosgenin biosynthesis, differential, factor-specific libraries were subject to the next-generation sequencing. Approximately 9.9 million reads were obtained, trimmed, and assembled into 31,491 unigenes with an average length of 291 bp. Then, functional annotation and gene ontogeny enrichment analysis was performed by aligning all-unigenes with public databases. Within the transcripts related to sterol and steroidal saponin biosynthesis, we discovered novel candidate genes of diosgenin biosynthesis and validated their expression using quantitative RT-PCR analysis. Based on these findings, we supported the idea that diosgenin is biosynthesized from cycloartenol via cholesterol. This is the first report on the next-generation sequencing of cDNA-RDA products. Analysis of the transcriptomes enriched in low copy sequences contributed substantially to our understanding of the biochemical pathways of steroid synthesis in fenugreek.


Assuntos
Acetatos/metabolismo , Ciclopentanos/metabolismo , Diosgenina/metabolismo , Oxilipinas/metabolismo , Fitosteróis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Trigonella/genética , DNA Complementar/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Trigonella/metabolismo
16.
Mol Genet Genomics ; 292(2): 415-433, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28028612

RESUMO

The present study aimed at identifying the regions of triticale genome responsible for cell wall saturation with phenolic compounds under drought stress during vegetative and generative growth. Moreover, the loci determining the activity of the photosynthetic apparatus, leaf water content (LWC) and osmotic potential (Ψ o) were identified, as leaf hydration and functioning of the photosynthetic apparatus under drought are associated with the content of cell wall-bound phenolics (CWPh). Compared with LWC and Ψ o, CWPh fluctuations were more strongly associated with changes in chlorophyll fluorescence. At the vegetative stage, CWPh fluctuations were due to the activity of three loci, of which only QCWPh.4B was also related to changes in F v/F m and ABS/CSm. In the other QTLs (QCWPh.6R.2 and QCWPh.6R.3), the genes of these loci determined also the changes in majority of chlorophyll fluorescence parameters. At the generative stage, the changes in CWPh in loci QCWPh.4B, QCWPh.3R and QCWPh.6R.1 corresponded to those in DIo/CSm. The locus QCWPh.6R.3, active at V stage, controlled majority of chlorophyll fluorescence parameters. This is the first study on mapping quantitative traits in triticale plants exposed to drought at different stages of development, and the first to present the loci for cell wall-bound phenolics.


Assuntos
Fenóis/química , Fotossíntese , Folhas de Planta/genética , Locos de Características Quantitativas , Triticale/genética , Parede Celular/metabolismo , Clorofila/genética , Mapeamento Cromossômico , Secas , Genes de Plantas , Ligação Genética , Genoma de Planta , Limite de Detecção , Osmose , Fenótipo , Folhas de Planta/química , Água
17.
Front Plant Sci ; 7: 1600, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833625

RESUMO

Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes.

18.
J Appl Genet ; 57(4): 439-451, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27085345

RESUMO

Genotyping by sequencing (GBS) is an efficient method of genotyping in numerous plant species. One of the crucial steps toward the application of GBS markers in crop improvement is anchoring them on particular chromosomes. In rye (Secale cereale L.), chromosomal localization of GBS markers has not yet been reported. In this paper, the application of GBS markers generated by the DArTseq platform for extending the high-density map of rye is presented. Additionally, their application is used for the localization of the Rfc1 gene that restores male fertility in plants with the C source of sterility-inducing cytoplasm. The total number of markers anchored on the current version of the map is 19,081, of which 18,132 were obtained from the DArTseq platform. Numerous markers co-segregated within the studied mapping population, so, finally, only 3397 unique positions were located on the map of all seven rye chromosomes. The total length of the map is 1593 cM and the average distance between markers is 0.47 cM. In spite of the resolution of the map being not very high, it should be a useful tool for further studies of the Secale cereale genome because of the presence on this map of numerous GBS markers anchored for the first time on rye chromosomes. The Rfc1 gene was located on high-density maps of the long arm of the 4R chromosome obtained for two mapping populations. Genetic maps were composed of DArT, DArTseq, and PCR-based markers. Consistent mapping results were obtained and DArTs tightly linked to the Rfc1 gene were successfully applied for the development of six new PCR-based markers useful in marker-assisted selection.


Assuntos
Mapeamento Cromossômico/métodos , Infertilidade das Plantas/genética , Secale/genética , Cromossomos de Plantas , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Genótipo , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala
19.
PLoS One ; 10(12): e0145714, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26717308

RESUMO

Triticale (×Triticosecale Wittm) is an economically important crop for fodder and biomass production. To facilitate the identification of markers for agronomically important traits and for genetic and genomic characteristics of this species, a new high-density genetic linkage map of triticale was constructed using doubled haploid (DH) population derived from a cross between cultivars 'Hewo' and 'Magnat'. The map consists of 1615 bin markers, that represent 50 simple sequence repeat (SSR), 842 diversity array technology (DArT), and 16888 DArTseq markers mapped onto 20 linkage groups assigned to the A, B, and R genomes of triticale. No markers specific to chromosome 7R were found, instead mosaic linkage group composed of 1880 highly distorted markers (116 bins) from 10 wheat chromosomes was identified. The genetic map covers 4907 cM with a mean distance between two bins of 3.0 cM. Comparative analysis in respect to published maps of wheat, rye and triticale revealed possible deletions in chromosomes 4B, 5A, and 6A, as well as inversion in chromosome 7B. The number of bin markers in each chromosome varied from 24 in chromosome 3R to 147 in chromosome 6R. The length of individual chromosomes ranged between 50.7 cM for chromosome 2R and 386.2 cM for chromosome 7B. A total of 512 (31.7%) bin markers showed significant (P < 0.05) segregation distortion across all chromosomes. The number of 8 the segregation distorted regions (SDRs) were identified on 1A, 7A, 1B, 2B, 7B (2 SDRs), 5R and 6R chromosomes. The high-density genetic map of triticale will facilitate fine mapping of quantitative trait loci, the identification of candidate genes and map-based cloning.


Assuntos
Mapeamento Cromossômico , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Triticale/genética , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Genoma de Planta
20.
J Appl Genet ; 56(3): 299-309, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25716655

RESUMO

The tolerance of spring barley (Hordeum vulgare L.) cultivars to spring drought is an important agronomic trait affecting crop yield and quality in Poland. Therefore, breeders require new molecular markers to select plants with lower spring drought susceptibility. With the advent of genomic selection technology, simple molecular tools may still be applicable to screen material for markers of the most important traits and in-depth genome scanning. In previous studies, diversity arrays technology (DArT)-based genetic maps were constructed for F2 populations of Polish fodder and malt barley elite breeding lines, and 15 and 18 quantitative trait loci (QTLs) related to spring drought tolerance were identified, respectively. In this paper, we show the results of a conversion of 30 DArT markers corresponding to 11 QTLs into simple sequence repeat (SSR) and sequence tagged site (STS) markers. Twenty-two polymorphic markers were obtained, including 13 DArT-based SSRs. Additionally, 31 SSR markers, located in close proximity to the DArT markers, were selected from the GrainGenes database and tested. Further analyses of 24 advanced breeding lines with different drought tolerances confirmed that five out of the 30 converted markers, as well as three out of the 31 additional SSR markers, were effective in marker-assisted selection for drought tolerance. The possible function of clones related to these markers in drought tolerance is discussed.


Assuntos
Secas , Hordeum/genética , Repetições de Microssatélites , Sitios de Sequências Rotuladas , Cruzamento , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Genótipo , Hordeum/fisiologia , Reação em Cadeia da Polimerase , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...