Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Neurosci ; 70(1): 102-111, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31520365

RESUMO

The lack of cerebral creatine (Cr) causes intellectual disability and epilepsy. In addition, a significant portion of individuals with Cr transporter (Crt) deficiency (CTD), the leading cause of cerebral Cr deficiency syndromes (CCDS), are diagnosed with attention-deficit hyperactivity disorder. While the neurological effects of CTD are clear, the mechanisms that underlie these deficits are unknown. Part of this is due to the heterogenous nature of the brain and the unique metabolic demands of specific neuronal systems. Of particular interest related to Cr physiology are dopaminergic neurons, as many CCDS patients have ADHD and Cr has been implicated in dopamine-associated neurodegenerative disorders, such as Parkinson's and Huntington's diseases. The purpose of this study was to examine the effect of a loss of the Slc6a8 (Crt) gene in dopamine transporter (Slc6a3; DAT) expressing cells on locomotor activity and motor function as the mice age. Floxed Slc6a8 (Slc6a8flox) mice were mated to DATIREScre expressing mice to generate DAT-specific Slc6a8 knockouts (dCrt-/y). Locomotor activity, spontaneous activity, and performance in the challenging beam test were evaluated monthly in dCrt-/y and control (Slc6a8flox) mice from 3 to 12 months of age. dCrt-/y mice were hyperactive compared with controls throughout testing. In addition, dCrt-/y mice showed increased rearing and hindlimb steps in the spontaneous activity test. Latency to cross the narrow bridge was increased in dCrt-/y mice while foot slips were unchanged. Taken together, these data suggest that the lack of Cr in dopaminergic neurons causes hyperactivity while sparing motor function.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Creatina/deficiência , Neurônios Dopaminérgicos/metabolismo , Locomoção , Proteínas de Membrana Transportadoras/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Animais , Encefalopatias Metabólicas Congênitas/fisiopatologia , Creatina/genética , Deleção de Genes , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética
2.
J Inherit Metab Dis ; 42(5): 966-974, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31209903

RESUMO

Creatine (Cr) is a guanidino compound that provides readily available phosphate pools for the regeneration of spent adenosine triphosphate (ATP). The lack of brain Cr causes moderate to severe intellectual disability, language impairment, and epilepsy. The most prevalent cause of Cr deficiency are mutations in the X-linked SLC6A8 (Creatine transporter; CrT) gene, known as CrT deficiency (CTD). One of the most critical areas that need to be addressed is whether Cr is necessary for brain development. To address this concern, the Slc6a8 gene was knocked out in either neonatal (postnatal day (P)5) or adult (P60) mice using a tamoxifen-inducible Cre recombinase driven by the human ubiquitin C (UBC) promoter. Mice were tested in the Morris water maze, novel, object recognition, and conditioned fear 60 days after Slc6a8 deletion. In addition, overnight locomotor activity was analyzed. Mice that had the gene deleted on P5 showed deficits in the Morris water maze and novel object recognition, while there were no deficits in P60 knockout mice. Interestingly, the P5 knockout mice showed hyperactivity during the dark phase; however, when examining control mice, the effect was due to the administration of tamoxifen from P5 to 10. Taken together, the results of this study show that Cr is necessary during periods of brain development involved in spatial and object learning. This study also highlights the continued importance of using proper control groups for behavioral testing.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Disfunção Cognitiva/genética , Creatina/deficiência , Proteínas de Membrana Transportadoras/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Animais , Encéfalo/metabolismo , Medo , Feminino , Aprendizagem em Labirinto , Transtornos da Memória/genética , Camundongos , Camundongos Knockout , Deleção de Sequência
3.
Nanomedicine (Lond) ; 14(12): 1579-1593, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31038003

RESUMO

Creatine transporter (CrT) deficiency is an X-linked intellectual disability caused by mutations of CrT. Aim: This work focus on the preclinical development of a new therapeutic approach based on a microemulsion (ME) as drug delivery system for dodecyl creatine ester (DCE). Materials & methods: DCE-ME was prepared by titration method. Novel object recognition (NOR) tests were performed before and after DCE-ME treatment on Slc6a8-/y mice. Results: Intranasal administration with DCE-ME improved NOR performance in Slc6a8-/y mice. Slc6a8-/y mice treated with DCE-ME had increased striatal ATP levels mainly in the striatum compared with vehicle-treated Slc6a8-/y mice which was associated with increased expression of synaptic markers. Conclusion: These results highlight the potential value of DCE-ME as promising therapy for creatine transporter deficiency.


Assuntos
Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Creatina/deficiência , Emulsões/química , Emulsões/uso terapêutico , Proteínas de Membrana Transportadoras/deficiência , Deficiência Intelectual Ligada ao Cromossomo X/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Administração Intranasal , Animais , Sistemas de Liberação de Medicamentos , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Microscopia Eletrônica de Transmissão , Mutação/genética
4.
Amino Acids ; 48(8): 2057-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27401086

RESUMO

Creatine (Cr) is a guanidino compound required for rapid replenishment of ATP in cells with a high-energy demand. In humans, mutations in the Cr transporter (CRT;SLC6A8) prevent Cr entry into tissue and result in a significant intellectual impairment, epilepsy, and aphasia. The lack of Cr on both the whole body and cellular metabolism was evaluated in Crt knockout (Crt (-/y) ) mice, a high-fidelity model of human CRT deficiency. Crt (-/y) mice have reduced body mass and, however, show a twofold increase in body fat. There was increased energy expenditure in a home cage environment and during treadmill running in Crt (-/y) mice. Consistent with the increases in the whole-body metabolic function, Crt (-/y) mice show increased cellular metabolism as well. Mitochondrial respiration increased in skeletal muscle fibers and hippocampal lysates from Crt (-/y) mice. In addition, Crt (-/y) mice had increased citrate synthase activity, suggesting a higher number of mitochondria instead of an increase in mitochondrial activity. To determine if the increase in respiration was due to increased mitochondrial numbers, we measured oxygen consumption in an equal number of mitochondria from Crt (+/y) and Crt (-/y) mice. There were no changes in mitochondrial respiration when normalized to mitochondrial number, suggesting that the increase in respiration observed could be to higher mitochondrial content in Crt (-/y) mice.


Assuntos
Adiposidade , Hipocampo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Animais , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Feminino , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Mutantes , Mitocôndrias Musculares/genética , Consumo de Oxigênio/genética
5.
J Inherit Metab Dis ; 37(1): 63-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23716276

RESUMO

Creatine transporter (CrT) deficiency (CTD) is an X-linked disorder characterized by intellectual disability and speech delay. There have been reports that show female carriers have clinical symptoms. We have created CrT knockout (CrT(-/y)) mice in which males show severe cognitive deficits as a model of this disorder. The purpose of this study was to examine if the female carrier mice show cognitive deficits. Reductions in Cr levels as well as CrT transcript were observed in the brains of the female CrT(+/-) mice. CrT(+/-) mice show hyperactivity and increased latency to find the cued platform in the Morris water maze (MWM). CrT(+/-) female mice showed deficits in MWM hidden platform acquisition but not during reversal testing. Memory deficits on probe trials were observed during both phases. Novel object recognition memory and contextual fear memory were not affected in female CrT(+/-) mice. Female CrT(+/-) mice show moderate cognitive deficits, which is consistent with some of the human data. Female CrT(+/-) mice could prove to be beneficial in further understanding CTD and testing therapeutic approaches.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Transtornos Cognitivos/genética , Creatina/deficiência , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Animais , Comportamento Animal , Encéfalo/metabolismo , Transtornos Cognitivos/complicações , Creatina/genética , Modelos Animais de Doenças , Medo , Feminino , Regulação da Expressão Gênica , Heterozigoto , Locomoção , Aprendizagem em Labirinto , Memória , Transtornos da Memória/genética , Camundongos , Camundongos Knockout , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...