Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 24(1): 122, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741115

RESUMO

MOTIVATION: Drug repurposing speeds up the development of new treatments, being less costly, risky, and time consuming than de novo drug discovery. There are numerous biological elements that contribute to the development of diseases and, as a result, to the repurposing of drugs. METHODS: In this article, we analysed the potential role of protein sequences in drug repurposing scenarios. For this purpose, we embedded the protein sequences by performing four state of the art methods and validated their capacity to encapsulate essential biological information through visualization. Then, we compared the differences in sequence distance between protein-drug target pairs of drug repurposing and non - drug repurposing data. Thus, we were able to uncover patterns that define protein sequences in repurposing cases. RESULTS: We found statistically significant sequence distance differences between protein pairs in the repurposing data and the rest of protein pairs in non-repurposing data. In this manner, we verified the potential of using numerical representations of sequences to generate repurposing hypotheses in the future.


Assuntos
Reposicionamento de Medicamentos , Humanos , Análise de Sequência de Proteína
2.
BMC Genomics ; 25(1): 43, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191292

RESUMO

BACKGROUND: Drug repurposing plays a significant role in providing effective treatments for certain diseases faster and more cost-effectively. Successful repurposing cases are mostly supported by a classical paradigm that stems from de novo drug development. This paradigm is based on the "one-drug-one-target-one-disease" idea. It consists of designing drugs specifically for a single disease and its drug's gene target. In this article, we investigated the use of biological pathways as potential elements to achieve effective drug repurposing. METHODS: Considering a total of 4214 successful cases of drug repurposing, we identified cases in which biological pathways serve as the underlying basis for successful repurposing, referred to as DREBIOP. Once the repurposing cases based on pathways were identified, we studied their inherent patterns by considering the different biological elements associated with this dataset, as well as the pathways involved in these cases. Furthermore, we obtained gene-disease association values to demonstrate the diminished significance of the drug's gene target in these repurposing cases. To achieve this, we compared the values obtained for the DREBIOP set with the overall association values found in DISNET, as well as with the drug's target gene (DREGE) based repurposing cases using the Mann-Whitney U Test. RESULTS: A collection of drug repurposing cases, known as DREBIOP, was identified as a result. DREBIOP cases exhibit distinct characteristics compared with DREGE cases. Notably, DREBIOP cases are associated with a higher number of biological pathways, with Vitamin D Metabolism and ACE inhibitors being the most prominent pathways. Additionally, it was observed that the association values of GDAs in DREBIOP cases were significantly lower than those in DREGE cases (p-value < 0.05). CONCLUSIONS: Biological pathways assume a pivotal role in drug repurposing cases. This investigation successfully revealed patterns that distinguish drug repurposing instances associated with biological pathways. These identified patterns can be applied to any known repurposing case, enabling the detection of pathway-based repurposing scenarios or the classical paradigm.


Assuntos
Reposicionamento de Medicamentos , Metabolismo dos Lipídeos , Sistemas de Liberação de Medicamentos , Estatísticas não Paramétricas
3.
Artif Intell Med ; 145: 102687, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37925215

RESUMO

Drug repurposing has gained the attention of many in the recent years. The practice of repurposing existing drugs for new therapeutic uses helps to simplify the drug discovery process, which in turn reduces the costs and risks that are associated with de novo development. Representing biomedical data in the form of a graph is a simple and effective method to depict the underlying structure of the information. Using deep neural networks in combination with this data represents a promising approach to address drug repurposing. This paper presents BEHOR a more comprehensive version of the REDIRECTION model, which was previously presented. Both versions utilize the DISNET biomedical graph as the primary source of information, providing the model with extensive and intricate data to tackle the drug repurposing challenge. This new version's results for the reported metrics in the RepoDB test are 0.9604 for AUROC and 0.9518 for AUPRC. Additionally, a discussion is provided regarding some of the novel predictions to demonstrate the reliability of the model. The authors believe that BEHOR holds promise for generating drug repurposing hypotheses and could greatly benefit the field.


Assuntos
Reposicionamento de Medicamentos , Redes Neurais de Computação , Reprodutibilidade dos Testes
4.
Healthcare (Basel) ; 10(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36141396

RESUMO

Rare diseases are a group of uncommon diseases in the world population. To date, about 7000 rare diseases have been documented. However, most of them do not have a known treatment. As a result of the relatively low demand for their treatments caused by their scarce prevalence, the pharmaceutical industry has not sufficiently encouraged the research to develop drugs to treat them. This work aims to analyse potential drug-repositioning strategies for this kind of disease. Drug repositioning seeks to find new uses for existing drugs. In this context, it seeks to discover if rare diseases could be treated with medicines previously indicated to heal other diseases. Our approaches tackle the problem by employing computational methods that calculate similarities between rare and non-rare diseases, considering biological features such as genes, proteins, and symptoms. Drug candidates for repositioning will be checked against clinical trials found in the scientific literature. In this study, 13 different rare diseases have been selected for which potential drugs could be repositioned. By verifying these drugs in the scientific literature, successful cases were found for 75% of the rare diseases studied. The genetic associations and phenotypical features of the rare diseases were examined. In addition, the verified drugs were classified according to the anatomical therapeutic chemical (ATC) code to highlight the types with a higher predisposition to be repositioned. These promising results open the door for further research in this field of study.

5.
Drug Discov Today ; 27(2): 558-566, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34666181

RESUMO

In the COVID-19 pandemic, drug repositioning has presented itself as an alternative to the time-consuming process of generating new drugs. This review describes a drug repurposing process that is based on a new data-driven approach: we put forward five information paths that associate COVID-19-related genes and COVID-19 symptoms with drugs that directly target these gene products, that target the symptoms or that treat diseases that are symptomatically or genetically similar to COVID-19. The intersection of the five information paths results in a list of 13 drugs that we suggest as potential candidates against COVID-19. In addition, we have found information in published studies and in clinical trials that support the therapeutic potential of the drugs in our final list.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Coleta de Dados/métodos , Reposicionamento de Medicamentos/métodos , Animais , Humanos
6.
Comput Struct Biotechnol J ; 19: 4559-4573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471499

RESUMO

Drug repurposing has become a widely used strategy to accelerate the process of finding treatments. While classical de novo drug development involves high costs, risks, and time-consuming paths, drug repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods make use of modern heterogeneous biomedical data to identify and prioritize new indications for old drugs. In the current paper, we present a new complete methodology to evaluate new potentially repurposable drugs based on disease-gene and disease-phenotype associations, identifying significant differences between repurposing and non-repurposing data. We have collected a set of known successful drug repurposing case studies from the literature and we have analysed their dissimilarities with other biomedical data not necessarily participating in repurposing processes. The information used has been obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical, and categorization levels), to conclude that there is a statistically significant difference between actual repurposing-related information and non-repurposing data. The insights obtained could be relevant when suggesting new potential drug repurposing hypotheses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...