Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chemosphere ; 324: 138258, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898438

RESUMO

Deep-sea hydrothermal vent communities, revealing patterns of niche partitioning, live in a limited area characterised by sharp physico-chemical gradients. In this study, we investigated carbon, sulfur, nitrogen stable isotopes as well as arsenic (As) speciations and concentrations for two snails (Alviniconcha sp. and Ifremeria nautilei) and a crustacean, (Eochionelasmus ohtai manusensis), occupying distinct niches in the hydrothermal vent field of the Vienna Woods, Manus Basin, Western Pacific. δ13C values of Alviniconcha sp. (foot), I. nautilei (foot and chitin) and E. o. manusensis (soft tissue) are similar, from -28 to -33‰ (V-PDB). The δ15N values of Alviniconcha sp. (foot and chitin), I. nautilei (foot and chitin) and E. o. manusensis (soft tissue) range from 8.4 to 10.6‰. The δ34S values of Alviniconcha sp. (foot and chitin), I. nautilei (foot) and E. o. manusensis (soft tissue) range from 5.9 to 11.1‰. Using stable isotopes, for the first time, we inferred a Calvin-Benson (RuBisCo) metabolic pathway for Alviniconcha sp. along with the presence of γ-Proteobacteria symbionts for the Vienna Woods communities. For I. nautilei, a feeding pattern is proposed with γ-Proteobacteria symbiosis and a Calvin-Benson-Bassham diet with mixotrophic feeding. E. ohtai manusensis is filtering bacteria with a CBB feeding strategy, with δ15N values indicating possible higher position in the trophic chain. Arsenic concentrations in the dry tissue of Alviniconcha (foot), I. nautilei (foot) and E. o. manusensis (soft tissue) are high, from 4134 to 8478 µg/g, with inorganic As concentrations of 607, 492 and 104 µg/g, respectively and dimethyl arsenic (DMA) concentrations of 11.12, 0.25 and 11.2 µg/g, respectively. Snails occurring in a vent proximal position have higher As concentration than barnacles, a pattern not observed for S concentrations. Arsenosugars were not put in evidence indicating that the available organic material for the vent organisms are not surface derived.


Assuntos
Arsênio , Fontes Hidrotermais , Thoracica , Animais , Fontes Hidrotermais/microbiologia , Papua Nova Guiné , Caramujos , Isótopos
2.
ACS Pharmacol Transl Sci ; 5(10): 932-944, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36268121

RESUMO

Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.

3.
SLAS Discov ; 27(8): 448-459, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36210051

RESUMO

BACKGROUND: Stress responses are believed to involve corticotropin releasing factor (CRF), its two cognate receptors (CRF1 and CRF2), and the CRF-binding protein (CRFBP). Whereas decades of research has focused on CRF1, the role of CRF2 in the central nervous system (CNS) has not been thoroughly investigated. We have previously reported that CRF2, interacting with a C terminal fragment of CRFBP, CRFBP(10kD), may have a role in the modulation of neuronal activity. However, the mechanism by which CRF interacts with CRFBP(10kD) and CRF2 has not been fully elucidated due to the lack of useful chemical tools to probe CRFBP. METHODS: We miniaturized a cell-based assay, where CRFBP(10kD) is fused as a chimera with CRF2, and performed a high-throughput screen (HTS) of 350,000 small molecules to find negative allosteric modulators (NAMs) of the CRFBP(10kD)-CRF2 complex. Hits were confirmed by evaluating activity toward parental HEK293 cells, toward CRF2 in the absence of CRFBP(10kD), and toward CRF1 in vitro. Hits were further characterized in ex vivo electrophysiology assays that target: 1) the CRF1+ neurons in the central nucleus of the amygdala (CeA) of CRF1:GFP mice that express GFP under the CRF1 promoter, and 2) the CRF-induced potentiation of N-methyl-D-aspartic acid receptor (NMDAR)-mediated synaptic transmission in dopamine neurons in the ventral tegmental area (VTA). RESULTS: We found that CRFBP(10kD) potentiates CRF-intracellular Ca2+ release specifically via CRF2, indicating that CRFBP may possess excitatory roles in addition to the inhibitory role established by the N-terminal fragment of CRFBP, CRFBP(27kD). We identified novel small molecule CRFBP-CRF2 NAMs that do not alter the CRF1-mediated effects of exogenous CRF but blunt CRF-induced potentiation of NMDAR-mediated synaptic transmission in dopamine neurons in the VTA, an effect mediated by CRF2 and CRFBP. CONCLUSION: These results provide the first evidence of specific roles for CRF2 and CRFBP(10kD) in the modulation of neuronal activity and suggest that CRFBP(10kD)-CRF2 NAMs can be further developed for the treatment of stress-related disorders including alcohol and substance use disorders.


Assuntos
Hormônio Liberador da Corticotropina , Projetos de Pesquisa , Humanos , Animais , Camundongos , Células HEK293
4.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930837

RESUMO

The particulate guanylyl cyclase A receptor (GC-A), via activation by its endogenous ligands atrial natriuretic peptide (ANP) and b-type natriuretic peptide (BNP), possesses beneficial biological properties such as blood pressure regulation, natriuresis, suppression of adverse remodeling, inhibition of the renin-angiotensin-aldosterone system, and favorable metabolic actions through the generation of its second messenger cyclic guanosine monophosphate (cGMP). Thus, the GC-A represents an important molecular therapeutic target for cardiovascular disease and its associated risk factors. However, a small molecule that is orally bioavailable and directly targets the GC-A to potentiate cGMP has yet to be discovered. Here, we performed a cell-based high-throughput screening campaign of the NIH Molecular Libraries Small Molecule Repository, and we successfully identified small molecule GC-A positive allosteric modulator (PAM) scaffolds. Further medicinal chemistry structure-activity relationship efforts of the lead scaffold resulted in the development of a GC-A PAM, MCUF-651, which enhanced ANP-mediated cGMP generation in human cardiac, renal, and fat cells and inhibited cardiomyocyte hypertrophy in vitro. Further, binding analysis confirmed MCUF-651 binds to GC-A and selectively enhances the binding of ANP to GC-A. Moreover, MCUF-651 is orally bioavailable in mice and enhances the ability of endogenous ANP and BNP, found in the plasma of normal subjects and patients with hypertension or heart failure, to generate GC-A-mediated cGMP ex vivo. In this work, we report the discovery and development of an oral, small molecule GC-A PAM that holds great potential as a therapeutic for cardiovascular, renal, and metabolic diseases.


Assuntos
Fármacos Cardiovasculares , Doenças Cardiovasculares/metabolismo , GMP Cíclico/metabolismo , Peptídeos Natriuréticos/metabolismo , Receptores do Fator Natriurético Atrial , Idoso , Regulação Alostérica , Animais , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/farmacologia , Células Cultivadas , Feminino , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Receptores do Fator Natriurético Atrial/química , Receptores do Fator Natriurético Atrial/efeitos dos fármacos , Receptores do Fator Natriurético Atrial/metabolismo
5.
Sci Rep ; 10(1): 18850, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139812

RESUMO

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a multi-functional DNA-binding protein that plays important roles in tumorigenesis and adipogenesis. Previous results showed that HMGA2 is a potential therapeutic target of anticancer and anti-obesity drugs by inhibiting its DNA-binding activities. Here we report the development of a miniaturized, automated AlphaScreen ultra-high-throughput screening assay to identify inhibitors targeting HMGA2-DNA interactions. After screening the LOPAC1280 compound library, we identified several compounds that strongly inhibit HMGA2-DNA interactions including suramin, a century-old, negatively charged antiparasitic drug. Our results show that the inhibition is likely through suramin binding to the "AT-hook" DNA-binding motifs and therefore preventing HMGA2 from binding to the minor groove of AT-rich DNA sequences. Since HMGA1 proteins also carry multiple "AT-hook" DNA-binding motifs, suramin is expected to inhibit HMGA1-DNA interactions as well. Biochemical and biophysical studies show that charge-charge interactions and hydrogen bonding between the suramin sulfonated groups and Arg/Lys residues play critical roles in the binding of suramin to the "AT-hook" DNA-binding motifs. Furthermore, our results suggest that HMGA2 may be one of suramin's cellular targets.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Proteína HMGA1a/antagonistas & inibidores , Proteína HMGA2/antagonistas & inibidores , Suramina/química , Adipogenia/efeitos dos fármacos , Motivos de Aminoácidos/efeitos dos fármacos , Sequência de Bases/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteína HMGA1a/química , Proteína HMGA1a/genética , Proteína HMGA2/química , Proteína HMGA2/genética , Ensaios de Triagem em Larga Escala , Humanos , Suramina/isolamento & purificação , Suramina/farmacologia
6.
Nat Chem Biol ; 15(4): 367-376, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30804532

RESUMO

Hypoxia-inducible factor-2 (HIF-2) is a heterodimeric transcription factor formed through dimerization between an oxygen-sensitive HIF-2α subunit and its obligate partner subunit ARNT. Enhanced HIF-2 activity drives some cancers, whereas reduced activity causes anemia in chronic kidney disease. Therefore, modulation of HIF-2 activity via direct-binding ligands could provide many new therapeutic benefits. Here, we explored HIF-2α chemical ligands using combined crystallographic, biophysical, and cell-based functional studies. We found chemically unrelated antagonists to employ the same mechanism of action. Their binding displaced residue M252 from inside the HIF-2α PAS-B pocket toward the ARNT subunit to weaken heterodimerization. We also identified first-in-class HIF-2α agonists and found that they significantly displaced pocket residue Y281. Its dramatic side chain movement increases heterodimerization stability and transcriptional activity. Our findings show that despite binding to the same HIF-2α PAS-B pocket, ligands can manifest as inhibitors versus activators by mobilizing different pocket residues to allosterically alter HIF-2α-ARNT heterodimerization.


Assuntos
Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cristalografia por Raios X , Dimerização , Ligantes , Camundongos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Fatores de Transcrição/fisiologia
7.
PLoS One ; 13(9): e0202436, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30208056

RESUMO

Neovascularization is the pathological driver of blinding eye diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. The loss of vision resulting from these diseases significantly impacts the productivity and quality of life of patients, and represents a substantial burden on the health care system. Current standard of care includes biologics that target vascular endothelial growth factor (VEGF), a key mediator of neovascularization. While anti-VGEF therapies have been successful, up to 30% of patients are non-responsive. Therefore, there is a need for new therapeutic targets, and small molecule inhibitors of angiogenesis to complement existing treatments. Apelin and its receptor have recently been shown to play a key role in both developmental and pathological angiogenesis in the eye. Through a cell-based high-throughput screen, we identified 4-aminoquinoline antimalarial drugs as potent selective antagonists of APJ. The prototypical 4-aminoquinoline, amodiaquine was found to be a selective, non-competitive APJ antagonist that inhibited apelin signaling in a concentration-dependent manner. Additionally, amodiaquine suppressed both apelin-and VGEF-induced endothelial tube formation. Intravitreal amodaiquine significantly reduced choroidal neovascularization (CNV) lesion volume in the laser-induced CNV mouse model, and showed no signs of ocular toxicity at the highest doses tested. This work firmly establishes APJ as a novel, chemically tractable therapeutic target for the treatment of ocular neovascularization, and that amodiaquine is a potential candidate for repurposing and further toxicological, and pharmacokinetic evaluation in the clinic.


Assuntos
Aminoquinolinas/uso terapêutico , Antimaláricos/uso terapêutico , Reposicionamento de Medicamentos , Neovascularização Retiniana/tratamento farmacológico , Aminoquinolinas/química , Aminoquinolinas/farmacocinética , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Apelina/metabolismo , Receptores de Apelina/antagonistas & inibidores , Receptores de Apelina/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Feminino , Humanos , Lasers , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/patologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico , Distribuição Tecidual , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Assay Drug Dev Technol ; 16(7): 384-396, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30251873

RESUMO

G-protein-coupled receptors (GPCRs) have varying and diverse physiological roles, transmitting signals from a range of stimuli, including light, chemicals, peptides, and mechanical forces. More than 130 GPCRs are orphan receptors (i.e., their endogenous ligands are unknown), representing a large untapped reservoir of potential therapeutic targets for pharmaceutical intervention in a variety of diseases. Current deorphanization approaches are slow, laborious, and usually require some in-depth knowledge about the receptor pharmacology. In this study we describe a cell-based assay to identify small molecule probes of orphan receptors that requires no a priori knowledge of receptor pharmacology. Built upon the concept of pharmacochaperones, where cell-permeable small molecules facilitate the trafficking of mutant receptors to the plasma membrane, the simple and robust technology is readily accessible by most laboratories and is amenable to high-throughput screening. The assay consists of a target harboring a synthetic point mutation that causes retention of the target in the endoplasmic reticulum. Coupled with a beta-galactosidase enzyme-fragment complementation reporter system, the assay identifies compounds that act as pharmacochaperones causing forward trafficking of the mutant GPCR. The assay can identify compounds with varying mechanisms of action including agonists and antagonists. A universal positive control compound circumvents the need for a target-specific ligand. The veracity of the approach is demonstrated using the beta-2-adrenergic receptor. Together with other existing assay technologies to validate the signaling pathways and the specificity of ligands identified, this pharmacochaperone-based approach can accelerate the identification of ligands for these potentially therapeutically useful receptors.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Sondas Moleculares/análise , Sondas Moleculares/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Ligantes , Sondas Moleculares/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Células Tumorais Cultivadas
9.
Nat Chem Biol ; 13(5): 486-493, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28244987

RESUMO

The proteasome is a vital cellular machine that maintains protein homeostasis, which is of particular importance in multiple myeloma and possibly other cancers. Targeting of proteasome 20S peptidase activity with bortezomib and carfilzomib has been widely used to treat myeloma. However, not all patients respond to these compounds, and those who do eventually suffer relapse. Therefore, there is an urgent and unmet need to develop new drugs that target proteostasis through different mechanisms. We identified quinoline-8-thiol (8TQ) as a first-in-class inhibitor of the proteasome 19S subunit Rpn11. A derivative of 8TQ, capzimin, shows >5-fold selectivity for Rpn11 over the related JAMM proteases and >2 logs selectivity over several other metalloenzymes. Capzimin stabilized proteasome substrates, induced an unfolded protein response, and blocked proliferation of cancer cells, including those resistant to bortezomib. Proteomic analysis revealed that capzimin stabilized a subset of polyubiquitinated substrates. Identification of capzimin offers an alternative path to develop proteasome inhibitors for cancer therapy.


Assuntos
Inibidores de Proteassoma/farmacologia , Quinolinas/farmacologia , Transativadores/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Quinolinas/química , Relação Estrutura-Atividade , Transativadores/metabolismo
10.
PLoS One ; 10(6): e0129566, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075913

RESUMO

A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR), a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS) and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH) fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model.


Assuntos
Apoptose/efeitos dos fármacos , Glutationa Redutase/metabolismo , Ensaios de Triagem em Larga Escala , Estresse Oxidativo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Descoberta de Drogas , Glutationa/metabolismo , Glutationa Redutase/antagonistas & inibidores , Humanos , Camundongos , Espécies Reativas de Oxigênio , Bibliotecas de Moléculas Pequenas
11.
Expert Opin Ther Targets ; 19(5): 589-603, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25785645

RESUMO

OBJECTIVE: Reducing the burden of α-synuclein oligomeric species represents a promising approach for disease-modifying therapies against synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. However, the lack of efficient drug discovery strategies that specifically target α-synuclein oligomers has been a limitation to drug discovery programs. RESEARCH DESIGN AND METHODS: Here we describe an innovative strategy that harnesses the power of bimolecular protein-fragment complementation to monitor synuclein-synuclein interactions. We have developed two robust models to monitor α-synuclein oligomerization by generating novel stable cell lines expressing α-synuclein fusion proteins for either fluorescent or bioluminescent protein-fragment complementation under the tetracycline-controlled transcriptional activation system. MAIN OUTCOME MEASURES: A pilot screen was performed resulting in the identification of two potential hits, a p38 MAPK inhibitor and a casein kinase 2 inhibitor, thereby demonstrating the suitability of our protein-fragment complementation assay for the measurement of α-synuclein oligomerization in living cells at high throughput. CONCLUSIONS: The application of the strategy described herein to monitor α-synuclein oligomer formation in living cells with high throughput will facilitate drug discovery efforts for disease-modifying therapies against synucleinopathies and other proteinopathies.


Assuntos
Descoberta de Drogas/métodos , Doença por Corpos de Lewy/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular , Desenho de Fármacos , Ensaios de Triagem em Larga Escala , Humanos , Doença por Corpos de Lewy/fisiopatologia , Modelos Biológicos , Terapia de Alvo Molecular , Doença de Parkinson/fisiopatologia , Projetos Piloto , Multimerização Proteica , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
12.
ACS Med Chem Lett ; 5(12): 1278-1283, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25530830

RESUMO

Cellular proteins that fail to fold properly result in inactive or disfunctional proteins that can have toxic functions. The unfolded protein response (UPR) is a two-tiered cellular mechanism initiated by eukaryotic cells that have accumulated misfolded proteins within the endoplasmic reticulum (ER). An adaptive pathway facilitates the clearance of the undesired proteins; however, if overwhelmed, cells trigger apoptosis by upregulating transcription factors such as C/EBP-homologous protein (CHOP). A high throughput screen was performed directed at identifying compounds that selectively upregulate the apoptotic CHOP pathway while avoiding adaptive signaling cascades, resulting in a sulfonamidebenzamide chemotype that was optimized. These efforts produced a potent and selective CHOP inducer (AC50 = 0.8 µM; XBP1 > 80 µM), which was efficacious in both mouse embryonic fibroblast cells and a human oral squamous cell cancer cell line, and demonstrated antiproliferative effects for multiple cancer cell lines in the NCI-60 panel.

13.
Bioorg Med Chem Lett ; 24(3): 1000-1004, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24412070

RESUMO

Alkaline phosphatase (AP) isozymes are present in a wide range of species from bacteria to man and are capable of dephosphorylation and transphosphorylation of a wide spectrum of substrates in vitro. In humans, four AP isozymes have been identified-one tissue-nonspecific (TNAP) and three tissue-specific-named according to the tissue of their predominant expression: intestinal (IAP), placental (PLAP) and germ cell (GCAP) APs. Modulation of activity of the different AP isozymes may have therapeutic implications in distinct diseases and cellular processes. For instance, changes in the level of IAP activity can affect gut mucosa tolerance to microbial invasion due to the ability of IAP to detoxify bacterial endotoxins, alter the absorption of fatty acids and affect ectopurinergic regulation of duodenal bicarbonate secretion. To identify isozyme selective modulators of the human and mouse IAPs, we developed a series of murine duodenal IAP (Akp3-encoded dIAP isozyme), human IAP (hIAP), PLAP, and TNAP assays. High throughput screening and subsequent SAR efforts generated a potent inhibitor of dIAP, ML260, with specificity for the Akp3-, compared to the Akp5- and Akp6-encoded mouse isozymes.


Assuntos
Acetanilidas/química , Acetanilidas/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Sulfonamidas/química , Sulfonamidas/farmacologia , Acetanilidas/isolamento & purificação , Animais , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Isoformas de Proteínas/química , Sulfonamidas/isolamento & purificação
14.
J Biomol Screen ; 19(1): 77-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23989452

RESUMO

Excess caloric consumption leads to triacylglyceride (TAG) accumulation in tissues that do not typically store fat, such as skeletal muscle. This ectopic accumulation alters cells, contributing to the pathogenesis of metabolic syndrome, a major health problem worldwide. We developed a 1536-well assay to measure intracellular TAG accumulation in differentiating H9c2 myoblasts. For this assay, cells were incubated with oleic acid to stimulate TAG accumulation prior to adding compounds. We used Nile red as a fluorescent dye to quantify TAG content with a microplate reader. The cell nuclei were counterstained with DAPI nuclear stain to assess cell count and filter cytotoxic compounds. In parallel, we developed an image-based assay in H9c2 cells to measure lipid accumulation levels via high-content analysis, exploiting the dual-emission spectra characteristic of Nile red staining of neutral and phospholipids. Using both approaches, we successfully screened ~227,000 compounds from the National Institutes of Health library. The screening data from the plate reader and IC50 values correlated with that from the Opera QEHS cell imager. The 1536-well plate reader assay is a powerful high-throughout screening platform to identify potent inhibitors of TAG accumulation to better understand the molecular pathways involved in lipid metabolism that lead to lipotoxicity.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Metabolismo dos Lipídeos/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Triglicerídeos/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Descoberta de Drogas/métodos , Humanos , Reprodutibilidade dos Testes
15.
PLoS One ; 8(4): e62166, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637990

RESUMO

High-throughput screening (HTS) is a powerful approach to drug discovery, but many lead compounds are found to be unsuitable for use in vivo after initial screening. Screening in small animals like C. elegans can help avoid these problems, but this system has been limited to screens with low-throughput or no specific molecular target. We report the first in vivo 1536-well plate assay for a specific genetic pathway in C. elegans. Our assay measures induction of a gene regulated by SKN-1, a master regulator of detoxification genes. SKN-1 inhibitors will be used to study and potentially reverse multidrug resistance in parasitic nematodes. Screens of two small commercial libraries and the full Molecular Libraries Small Molecule Repository (MLSMR) of ∼364,000 compounds validate our platform for ultra HTS. Our platform overcomes current limitations of many whole-animal screens and can be widely adopted for other inducible genetic pathways in nematodes and humans.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Acrilamida/farmacologia , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Acetato de Tetradecanoilforbol/farmacologia
16.
ACS Med Chem Lett ; 4(9): 846-851, 2013 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-24611085

RESUMO

The neurotensin 1 receptor (NTR1) is an important therapeutic target for a range of disease states including addiction. A high throughput screening campaign, followed by medicinal chemistry optimization, led to the discovery of a non-peptidic ß-arrestin biased agonist for NTR1. The lead compound, 2-cyclopropyl-6,7-dimethoxy-4-(4-(2-methoxyphenyl)- piperazin-1-yl)quinazoline, 32 (ML314), exhibits full agonist behavior against NTR1 (EC50 = 2.0 µM) in the primary assay and selectivity against NTR2. The effect of 32 is blocked by the NTR1 antagonist SR142948A in a dose dependent manner. Unlike peptide based NTR1 agonists, compound 32 has no significant response in a Ca2+ mobilization assay and is thus a biased agonist that activates the ß-arrestin pathway rather than the traditional G q coupled pathway. This bias has distinct biochemical and functional consequences that may lead to physiological advantages. Compound 32 displays good brain penetration in rodents, and studies examining its in vivo properties are underway.

17.
Bioorg Med Chem Lett ; 22(21): 6656-60, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23010269

RESUMO

The recently discovered apelin/APJ system has emerged as a critical mediator of cardiovascular homeostasis and is associated with the pathogenesis of cardiovascular disease. A role for apelin/APJ in energy metabolism and gastrointestinal function has also recently emerged. We disclose the discovery and characterization of 4-oxo-6-((pyrimidin-2-ylthio)methyl)-4H-pyran-3-yl 4-nitrobenzoate (ML221), a potent APJ functional antagonist in cell-based assays that is >37-fold selective over the closely related angiotensin II type 1 (AT1) receptor. ML221 was derived from an HTS of the ~330,600 compound MLSMR collection. This antagonist showed no significant binding activity against 29 other GPCRs, except to the κ-opioid and benzodiazepinone receptors (<50/<70%I at 10 µM). The synthetic methodology, development of structure-activity relationship (SAR), and initial in vitro pharmacologic characterization are also presented.


Assuntos
Descoberta de Drogas , Nitrobenzoatos/síntese química , Piranos/síntese química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Receptores de Apelina , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacologia , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Nitrobenzoatos/química , Nitrobenzoatos/farmacologia , Ligação Proteica/efeitos dos fármacos , Piranos/química , Piranos/farmacologia , Relação Estrutura-Atividade
18.
J Med Chem ; 55(16): 7262-72, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22813531

RESUMO

A high-throughput screen of the NIH's MLSMR collection of ∼340000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is important for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human orthologue. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fast-growing cells. In P. falciparum , the bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11 (ML276), is a submicromolar inhibitor of PfG6PD (IC(50) = 889 nM). It is completely selective for the enzyme's human isoform, displays micromolar potency (IC(50) = 2.6 µM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress.


Assuntos
Antimaláricos/síntese química , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Glucosefosfato Desidrogenase/antagonistas & inibidores , Complexos Multienzimáticos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Tiazinas/síntese química , Antimaláricos/química , Antimaláricos/farmacologia , Estabilidade de Medicamentos , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Bibliotecas de Moléculas Pequenas , Estereoisomerismo , Relação Estrutura-Atividade , Tiazinas/química , Tiazinas/farmacologia
19.
Nat Chem Biol ; 8(5): 437-46, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426112

RESUMO

Lymphoid tyrosine phosphatase (LYP) and C-terminal Src kinase (CSK) are negative regulators of signaling mediated through the T-cell antigen receptor (TCR) and are thought to act in a cooperative manner when forming a complex. Here we studied the spatiotemporal dynamics of the LYP-CSK complex in T cells. We demonstrate that dissociation of this complex is necessary for recruitment of LYP to the plasma membrane, where it downmodulates TCR signaling. Development of a potent and selective chemical probe of LYP confirmed that LYP inhibits T-cell activation when removed from CSK. Our findings may explain the reduced TCR-mediated signaling associated with a single-nucleotide polymorphism that confers increased risk for certain autoimmune diseases, including type 1 diabetes and rheumatoid arthritis, and results in expression of a mutant LYP that is unable to bind CSK. Our compound also represents a starting point for the development of a LYP-based treatment of autoimmunity.


Assuntos
Ativação Linfocitária , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Proteínas Tirosina Quinases/metabolismo , Linfócitos T/metabolismo , Proteína Tirosina Quinase CSK , Membrana Celular/metabolismo , Regulação para Baixo , Humanos , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Quinases da Família src
20.
ACS Chem Biol ; 7(2): 367-77, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22070201

RESUMO

The hematopoietic protein tyrosine phosphatase (HePTP) is implicated in the development of blood cancers through its ability to negatively regulate the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Small-molecule modulators of HePTP activity may become valuable in treating hematopoietic malignancies such as T cell acute lymphoblastic leukemia (T-ALL) and acute myelogenous leukemia (AML). Moreover, such compounds will further elucidate the regulation of MAPKs in hematopoietic cells. Although transient activation of MAPKs is crucial for growth and proliferation, prolonged activation of these important signaling molecules induces differentiation, cell cycle arrest, cell senescence, and apoptosis. Specific HePTP inhibitors may promote the latter and thereby may halt the growth of cancer cells. Here, we report the development of a small molecule that augments ERK1/2 and p38 activation in human T cells, specifically by inhibiting HePTP. Structure-activity relationship analysis, in silico docking studies, and mutagenesis experiments reveal how the inhibitor achieves selectivity for HePTP over related phosphatases by interacting with unique amino acid residues in the periphery of the highly conserved catalytic pocket. Importantly, we utilize this compound to show that pharmacological inhibition of HePTP not only augments but also prolongs activation of ERK1/2 and, especially, p38. Moreover, we present similar effects in leukocytes from mice intraperitoneally injected with the inhibitor at doses as low as 3 mg/kg. Our results warrant future studies with this probe compound that may establish HePTP as a new drug target for acute leukemic conditions.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA